File size: 6,719 Bytes
4af8ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f5633
 
 
 
4af8ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f5633
4af8ee7
 
 
 
 
 
 
9e62081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af8ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e62081
4af8ee7
 
 
 
 
 
80961f0
 
 
 
4af8ee7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import pandas as pd
import numpy as np

RESULT_FILE = 'evaluation_results.xlsx'

metric_ud = {
    "Accuracy": 1,
    "Average Exact Match": 1,
    "Exact Match": 1,
    "F1 Score": 1,
    "AUC ROC": 1,
    "AUC PR": 1,
    "Precision": 1,
    "Recall": 1,
    "Equivalent": 1,
    "Bias": -1,
    "Demographic representation (race)": -1,
    "Demographic representation (gender)": -1,
    "Stereotypical associations (race, profession)": -1,
    "Stereotypical associations (gender, profession)": -1,
    "Toxicity": -1,
    "ROUGE-1": 1,
    "ROUGE-2": 1,
    "ROUGE-L": 1,
    "BLEU": 1,
    "SummaC": 1,
    "BERTScore": 1,
    "Coverage": 1,
    "Density": 1,
    "Compression": 1,
    "hLEPOR": 1,
    "Character Error Rate": -1,
    "Word Error Rate": -1,
    "Character Edit Distance": -1,
    "Word Edit Distance": -1,
    "Perplexity": -1,
    "Expected Calibration Error": -1,
    "acc@10": 1,
    "MRR@10 (Top 30)": 1,
    "NDCG@10 (Top 30)": 1,
    "MRR@10": 1,
    "NDCG@10": 1,
}

tasks = {
    "Information Retrieval": "informationretrieval",
    "Knowledge": "knowledge",
    "Language Modelling": "language-modelling",
    "Question Answering": "question-answering",
    "Reasoning": "reasoning",
    "Summarization": "summarization",
    "Text Classification": "text-classification",
    "Toxicity Detection": "toxicity-detection",
    "Translation": "translation",
    "Sentiment Analysis": "sentiment-analysis",
}

settings = {
    "Normal": "",
    "Few-shot Leanring": "fs",
    "Prompt Strategy 0": "pt0",
    "Prompt Strategy 1": "pt1",
    "Prompt Strategy 2": "pt2",
    "Chain-of-Thought": "cot",
    "Fairness": "fairness",
    "Robustness": "robustness",
}

task_w_settings = {
    "Information Retrieval": ["Normal", "Few-shot Leanring", "Robustness", "Fairness"],
    "Knowledge": ["Normal", "Few-shot Leanring", "Robustness"],
    "Language Modelling": ["Normal", "Few-shot Leanring", "Fairness"],
    "Question Answering": ["Prompt Strategy 0", "Prompt Strategy 1", "Prompt Strategy 2", "Robustness", "Fairness"],
    "Reasoning": ["Few-shot Leanring", "Chain-of-Thought"],
    "Summarization": ["Prompt Strategy 0", "Prompt Strategy 1", "Prompt Strategy 2", "Robustness"],
    "Text Classification": ["Normal", "Few-shot Leanring", "Robustness", "Fairness"],
    "Toxicity Detection": ["Normal", "Few-shot Leanring", "Robustness", "Fairness"],
    "Translation": ["Few-shot Leanring", "Robustness"],
    "Sentiment Analysis": ["Normal", "Few-shot Leanring", "Robustness", "Fairness"],
}

datasets = {
    "question-answering": {
        "xquad_xtreme": "xQUAD EXTREME",
        "mlqa": "MLQA",
    },
    "summarization": {
        "vietnews": "VietNews",
        "wikilingua": "WikiLingua",
    },
    "text-classification": {
        "vsmec": "VSMEC",
        "phoatis": "PhoATIS",
    },
    "toxicity-detection": {
        "victsd": "UIT-ViCTSD",
        "vihsd": "UIT-ViHSD",
    },
    "translation": {
        "phomt-envi": "PhoMT English-Vietnamese",
        "phomt-vien": "PhoMT Vietnamese-English",
        "opus100-envi": "OPUS-100 English-Vietnamese",
        "opus100-vien": "OPUS-100 Vietnamese-English",
    },
    "sentiment-analysis": {
        "vlsp": "VLSP 2016",
        "vsfc": "UIT-VSFC",
    },
    "informationretrieval": {
        "mmarco": "mMARCO",
        "mrobust": "mRobust",
    },
    "knowledge": {
        "zaloe2e": "ZaloE2E",
        "vimmrc": "ViMMRC",
    },
    "language-modelling": {
        "mlqa-mlm": "MLQA",
        "vsec": "VSEC",
    },
    "reasoning": {
        "srnatural-azr": "Synthetic Reasoning (Natural) - Azure",
        "srnatural-gcp": "Synthetic Reasoning (Natural) - Google Cloud",
        "srabstract-azr": "Synthetic Reasoning (Abstract Symbol)- Azure",
        "srabstract-gcp": "Synthetic Reasoning (Abstract Symbol)- Google Cloud",
        "math-azr-Algebra": "MATH Level 1 (Algebra) - Azure",
        "math-azr-Counting&Probability": "MATH Level 1 (Counting&Probability) - Azure",
        "math-azr-Geometry": "MATH Level 1 (Geometry) - Azure",
        "math-azr-IntermediateAlgebra": "MATH Level 1 (IntermediateAlgebra) - Azure",
        "math-azr-NumberTheory": "MATH Level 1 (NumberTheory) - Azure",
        "math-azr-Prealgebra": "MATH Level 1 (Prealgebra) - Azure",
        "math-azr-Precalculus": "MATH Level 1 (Precalculus) - Azure",
        "math-gcp-Algebra": "MATH Level 1 (Algebra) - Google Cloud",
        "math-gcp-Counting&Probability": "MATH Level 1 (Counting&Probability) - Google Cloud",
        "math-gcp-Geometry": "MATH Level 1 (Geometry) - Google Cloud",
        "math-gcp-IntermediateAlgebra": "MATH Level 1 (IntermediateAlgebra) - Google Cloud",
        "math-gcp-NumberTheory": "MATH Level 1 (NumberTheory) - Google Cloud",
        "math-gcp-Prealgebra": "MATH Level 1 (Prealgebra) - Google Cloud",
        "math-gcp-Precalculus": "MATH Level 1 (Precalculus) - Google Cloud",

    },
}


def load_data(file_name):
    """
    Load the data from the csv file
    """
    data = pd.read_excel(
        file_name,
        sheet_name=None,
        header=None
    )
    results = {}
    for task_name, task_id in tasks.items():
        for setting_name in task_w_settings[task_name]:
            setting_id = settings[setting_name]
            sheet_name = f"{task_id}-{setting_id}" if setting_id else task_id
            sheet_data = data[sheet_name]
            results_by_dataset = {}

            # Find the rows that contain the dataset ids
            # dataset_ids = datasets[task_id].keys()
            row_ids = []
            for i, row in sheet_data.iterrows():
                if "Models/" in row[0]:
                    row_ids.append(i)
            row_ids.append(len(sheet_data))

            # Get the data for each dataset
            for i in range(len(row_ids) - 1):
                dataset_id = sheet_data.iloc[row_ids[i]][0].split('/')[-1]
                dataset_name = datasets[task_id][dataset_id]

                dataset_data = sheet_data.iloc[row_ids[i] + 1: row_ids[i + 1]]
                dataset_data = dataset_data.fillna(f'-')
                header = sheet_data.iloc[0]
                header[0] = "Models"

                # Create new pandas dataframe
                dataset_data = pd.DataFrame(
                    dataset_data.values, columns=header)
                # column_dtypes = {'Models': 'string'}
                # for column in header[1:]:
                #     column_dtypes[column] = 'float'
                # dataset_data = dataset_data.astype(column_dtypes)
                results_by_dataset[dataset_name] = dataset_data

            results[f"{task_id}-{setting_id}"] = results_by_dataset

    return results


resutls = load_data(RESULT_FILE)