|
from abc import abstractmethod |
|
from typing import Dict, Union |
|
|
|
from .dataclass import NonPositionalField |
|
from .formats import Format |
|
from .fusion import FixedFusion, WeightedFusion |
|
from .operator import SourceOperator |
|
from .standard import DatasetRecipe |
|
from .stream import MultiStream |
|
from .system_prompts import SystemPrompt |
|
|
|
|
|
class BaseBenchmark(SourceOperator): |
|
format: Format = NonPositionalField(default=None) |
|
num_demos: int = NonPositionalField(default=None) |
|
system_prompt: SystemPrompt = NonPositionalField(default=None) |
|
loader_limit: int = NonPositionalField(default=None) |
|
|
|
@abstractmethod |
|
def reset(self): |
|
pass |
|
|
|
|
|
class Benchmark(BaseBenchmark): |
|
subsets: Dict[str, Union[DatasetRecipe, BaseBenchmark]] |
|
|
|
max_total_samples: int = None |
|
max_samples_per_subset: int = None |
|
|
|
def verify(self): |
|
super().verify() |
|
if ( |
|
self.max_total_samples is not None |
|
and self.max_samples_per_subset is not None |
|
): |
|
raise ValueError("Set either max_total_samples or max_samples_per_subset") |
|
|
|
def prepare_args(self): |
|
self.subsets = dict(self.subsets) |
|
|
|
def reset(self): |
|
if ( |
|
self.format is not None |
|
or self.num_demos is not None |
|
or self.system_prompt is not None |
|
or self.loader_limit is not None |
|
): |
|
for subset in self.subsets.values(): |
|
if self.num_demos is not None: |
|
subset.num_demos = self.num_demos |
|
if self.format is not None: |
|
subset.format = self.format |
|
if self.system_prompt is not None: |
|
subset.system_prompt = self.system_prompt |
|
if self.loader_limit is not None: |
|
subset.loader_limit = self.loader_limit |
|
|
|
subset.reset() |
|
|
|
def prepare(self): |
|
super().prepare() |
|
|
|
self.reset() |
|
|
|
def process( |
|
self, |
|
) -> MultiStream: |
|
if self.max_total_samples is None: |
|
operator = FixedFusion( |
|
subsets=self.subsets, |
|
max_instances_per_subset=self.max_samples_per_subset, |
|
) |
|
else: |
|
operator = WeightedFusion( |
|
subsets=self.subsets, max_total_samples=self.max_total_samples |
|
) |
|
|
|
return operator() |
|
|