metric / templates.py
Elron's picture
Upload templates.py with huggingface_hub
f29d15a
raw
history blame
13.1 kB
import json
from abc import ABC, abstractmethod
from dataclasses import field
from typing import Any, Dict, List, Optional, Union
from .artifact import Artifact
from .dataclass import NonPositionalField
from .instructions import Instruction, TextualInstruction
from .operator import InstanceOperatorWithGlobalAccess, StreamInstanceOperator
from .random_utils import random
from .text_utils import split_words
class Renderer(ABC):
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class Template(Artifact):
is_multi_target: bool = NonPositionalField(default=False)
is_multi_reference: bool = NonPositionalField(default=False)
@abstractmethod
def process_inputs(self, inputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
pass
@abstractmethod
def get_postprocessors(self) -> List[str]:
pass
class RenderFormatTemplate(Renderer, StreamInstanceOperator):
template: Template = None
random_reference: bool = False
def verify(self):
assert isinstance(self.template, Template), "Template must be an instance of Template"
assert self.template is not None, "Template must be specified"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return self.render(instance)
def render(self, instance: Dict[str, Any]) -> Dict[str, Any]:
inputs = instance.pop("inputs")
outputs = instance.pop("outputs")
source = self.template.process_inputs(inputs)
targets = self.template.process_outputs(outputs)
if self.template.is_multi_reference:
references = targets
if self.random_reference:
target = random.choice(references)
else:
if len(references) == 0:
raise ValueError("No references found")
target = references[0]
else:
references = [targets]
target = targets
return {
**instance,
"source": source,
"target": target,
"references": references,
}
def get_postprocessors(self) -> List[str]:
return self.template.get_postprocessors()
class RenderAutoFormatTemplate(RenderFormatTemplate):
def prepare(self):
if self.template is None:
self.template = AutoInputOutputTemplate()
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
try:
if not self.template.is_complete():
self.template.infer_missing(instance["inputs"], instance["outputs"])
except:
pass
inputs = {key: value for key, value in instance["inputs"].items()}
return super().render({**instance, "inputs": inputs})
class CharacterSizeLimiter(Artifact):
limit: int = 1000
def check(self, text: str) -> bool:
return len(text) <= self.limit
class RenderTemplatedICL(RenderAutoFormatTemplate):
instruction: Instruction = None
input_prefix: str = ""
output_prefix: str = ""
target_prefix: str = " "
instruction_prefix: str = ""
demos_field: str = None
size_limiter: Artifact = None
input_output_separator: str = "\n"
demo_separator: str = "\n\n"
system_prompt: str = None
def render(self, instance: Dict[str, object]) -> Dict[str, object]:
demos = instance.pop(self.demos_field, [])
source = ""
example = super().render(instance)
input_str = self.input_prefix + example["source"] + self.input_output_separator + self.output_prefix
if self.instruction is not None:
source += self.instruction_prefix + self.instruction() + self.demo_separator
for demo_instance in demos:
demo_example = super().render(demo_instance)
demo_str = (
self.input_prefix
+ demo_example["source"]
+ self.input_output_separator
+ self.output_prefix
+ self.target_prefix
+ demo_example["target"]
+ self.demo_separator
)
if self.size_limiter is not None:
if not self.size_limiter.check(source + demo_str + input_str + example["target"]):
continue
source += demo_str
source += input_str
if self.system_prompt is not None:
source = self.system_prompt.format(source)
return {
**example,
"source": source,
}
class InputOutputTemplate(Template):
input_format: str = None
output_format: str = None
postprocessors: List[str] = field(default_factory=lambda: ["processors.to_string_stripped"])
def process_template(self, template: str, data: Dict[str, object]) -> str:
data = {k: ", ".join(v) if isinstance(v, list) else v for k, v in data.items()}
return template.format(**data)
def process_inputs(self, inputs: Dict[str, object]) -> str:
try:
return self.process_template(self.input_format, inputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {inputs.keys()} but input format requires a different one: {self.input_format}"
)
def process_outputs(self, outputs: Dict[str, object]) -> str:
try:
return self.process_template(self.output_format, outputs)
except KeyError as e:
raise KeyError(
f"Available inputs are {outputs.keys()} but output format requires a different one: {self.output_format}"
)
def get_postprocessors(self) -> List[str]:
return self.postprocessors
class KeyValTemplate(Template):
pairs_seperator: str = ", "
key_val_seperator: str = ": "
use_keys_for_inputs: bool = True
outputs_key_val_seperator: str = ": "
use_keys_for_outputs: bool = False
postprocessors: List[str] = field(default_factory=lambda: ["processors.to_string_stripped"])
def process_dict(self, dic: Dict[str, object], key_val_sep, pairs_sep, use_keys) -> str:
dic = {k: ", ".join([str(vi) for vi in v]) if isinstance(v, list) else v for k, v in dic.items()}
pairs = []
for key, val in dic.items():
key_val = [key, val] if use_keys else [val]
pairs.append(key_val_sep.join(key_val))
return pairs_sep.join(pairs)
def process_inputs(self, inputs: Dict[str, object]) -> str:
return self.process_dict(
inputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_inputs,
)
def process_outputs(self, outputs: Dict[str, object]) -> str:
return self.process_dict(
outputs,
key_val_sep=self.key_val_seperator,
pairs_sep=self.pairs_seperator,
use_keys=self.use_keys_for_outputs,
)
def get_postprocessors(self) -> List[str]:
return self.postprocessors
class OutputQuantizingTemplate(InputOutputTemplate):
quantum: float = 0.1
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
quantized_outputs = {
key: round(input_float / self.quantum) * self.quantum for key, input_float in outputs.items()
}
return super().process_outputs(quantized_outputs)
class MultiLabelTemplate(InputOutputTemplate):
labels_field: str = "labels"
labels_seprator: str = ", "
postprocessors = ["processors.to_list_by_comma"]
output_format = "{labels}"
empty_label = "None"
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
labels = outputs[self.labels_field]
if len(labels) == 0:
labels = [self.empty_label]
labels_str = self.labels_seprator.join(labels)
return super().process_outputs({"labels": labels_str})
def escape_chars(s, chars_to_escape):
for char in chars_to_escape:
s = s.replace(char, f"\\{char}")
return s
class SpanLabelingBaseTemplate(MultiLabelTemplate):
spans_starts_field: str = "spans_starts"
spans_ends_field: str = "spans_ends"
text_field: str = "text"
labels_support: list = None
def extract_span_label_pairs(self, outputs):
spans_starts = outputs[self.spans_starts_field]
spans_ends = outputs[self.spans_ends_field]
text = outputs[self.text_field]
labels = outputs[self.labels_field]
spans = []
for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
if self.labels_support is None or label in self.labels_support:
spans.append((span_start, span_end, text[span_start:span_end], label))
for span in sorted(spans):
if self.labels_support is None or span[3] in self.labels_support:
yield span[2], span[3]
def process_outputs(self, outputs: Dict[str, object]) -> Dict[str, object]:
span_lables_pairs = self.extract_span_label_pairs(outputs)
targets = self.span_label_pairs_to_targets(span_lables_pairs)
return super().process_outputs({"labels": targets})
@abstractmethod
def span_label_pairs_to_targets(self, pairs):
pass
class SpanLabelingTemplate(SpanLabelingBaseTemplate):
span_label_format: str = "{span}: {label}"
escape_characters: List[str] = [":", ","]
postprocessors = ["processors.to_span_label_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
targets = []
for span, label in span_label_pairs:
if self.escape_characters is not None:
span = escape_chars(span, self.escape_characters)
target = self.span_label_format.format(span=span, label=label)
targets.append(target)
return targets
class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
postprocessors = ["processors.load_json", "processors.dict_of_lists_to_value_key_pairs"]
def span_label_pairs_to_targets(self, span_label_pairs):
groups = {}
for span, label in span_label_pairs:
if label not in groups:
groups[label] = list()
groups[label].append(span)
if len(groups) > 0:
targets = [json.dumps(groups)]
else:
targets = []
return targets
class AutoInputOutputTemplate(InputOutputTemplate):
def infer_input_format(self, inputs):
input_format = ""
for key in inputs.keys():
name = " ".join(word.lower().capitalize() for word in split_words(key) if word != " ")
input_format += name + ": " + "{" + key + "}" + "\n"
self.input_format = input_format
def infer_output_format(self, outputs):
self.output_format = "{" + next(iter(outputs.keys())) + "}"
def infer_missing(self, inputs, outputs):
if self.input_format is None:
self.infer_input_format(inputs)
if self.output_format is None:
self.infer_output_format(outputs)
def is_complete(self):
return self.input_format is not None and self.output_format is not None
from .collections import ListCollection
class TemplatesList(ListCollection):
def verify(self):
for template in self.items:
assert isinstance(template, Template)
def outputs_inputs2templates(inputs: Union[str, List], outputs: Union[str, List]) -> TemplatesList:
"""
combines input and output formats into their dot product
:param inputs: list of input formats (or one)
:param outputs: list of output formats (or one)
:return: TemplatesList of InputOutputTemplate
"""
templates = []
if isinstance(inputs, str):
inputs = [inputs]
if isinstance(outputs, str):
outputs = [outputs]
for input in inputs:
for output in outputs:
templates.append(
InputOutputTemplate(
input_format=input.strip(),
output_format=output.strip(),
),
)
return TemplatesList(templates)
def instructions2templates(
instructions: List[TextualInstruction], templates: List[InputOutputTemplate]
) -> TemplatesList:
"""
Insert instructions into per demonstration templates
:param instructions:
:param templates: strings containing {instuction} where the instruction should be placed
:return:
"""
res_templates = []
for instruction in instructions:
for template in templates:
res_templates.append(
InputOutputTemplate(
input_format=template.input_format.replace("{instruction}", instruction.text),
output_format=template.output_format,
)
)
return TemplatesList(templates)
class TemplatesDict(Dict):
def verify(self):
for key, template in self.items():
assert isinstance(template, Template)