File size: 22,956 Bytes
e7f788e fed4eb4 c4a2537 fe70438 c4a2537 9e30502 d08fbc6 100c2eb e7f788e d08fbc6 e7f788e 9e30502 fe70438 fed4eb4 fe70438 fed4eb4 9e30502 24278cc 9e30502 fe70438 9e30502 fe70438 fed4eb4 9e30502 fe70438 fed4eb4 fe70438 fed4eb4 fe70438 9e30502 fe70438 fed4eb4 fe70438 fed4eb4 9e30502 fe70438 9e30502 fe70438 fed4eb4 fe70438 fed4eb4 9e30502 e7f788e 9e30502 5fe31b7 1fbdf4c cb31369 1fbdf4c e7f788e 5fe31b7 1fbdf4c e7f788e 36b5223 1fbdf4c 36b5223 cb31369 e7f788e 36b5223 e7f788e 111e0b1 100c2eb b462f85 111e0b1 e7f788e 5fe31b7 1fbdf4c cb31369 fc6c7eb d08fbc6 a66b8be d08fbc6 a66b8be e7f788e 5fe31b7 e7f788e 5fe31b7 e7f788e d08fbc6 0a1b314 111e0b1 916e075 d08fbc6 916e075 e7f788e 058c80a 24df49f 058c80a 24df49f 058c80a 24df49f 058c80a 24df49f 058c80a d08fbc6 0a1b314 5fe31b7 1fbdf4c 24df49f a66b8be 1fbdf4c cb31369 5fe31b7 9e30502 a19f8c1 e7f788e 5fe31b7 0a1b314 e7f788e 5fe31b7 100c2eb 5fe31b7 e7f788e 5fe31b7 a19f8c1 5fe31b7 a19f8c1 5fe31b7 a19f8c1 5fe31b7 e7f788e 5fe31b7 e7f788e d08fbc6 0a1b314 111e0b1 d08fbc6 916e075 e7f788e 0a1b314 5fe31b7 e7f788e 24df49f a66b8be 24df49f 1fbdf4c cb31369 1fbdf4c cb31369 5fe31b7 1fbdf4c 916e075 1fbdf4c e7f788e 1fbdf4c 5fe31b7 1fbdf4c e7f788e d08fbc6 0a1b314 916e075 d08fbc6 916e075 e7f788e 5fe31b7 1fbdf4c 24df49f 1fbdf4c cb31369 e7f788e fc6c7eb e7f788e 0a1b314 5fe31b7 1fbdf4c 24df49f 1fbdf4c cb31369 5fe31b7 5ba849c 5fe31b7 0a1b314 e7f788e 5fe31b7 e7f788e d08fbc6 916e075 e7f788e 0a1b314 5fe31b7 1fbdf4c 24df49f 1fbdf4c cb31369 e7f788e 5fe31b7 e7f788e 5fe31b7 100c2eb e7f788e d08fbc6 e7f788e 5fe31b7 e7f788e 5fe31b7 1fbdf4c cb31369 1fbdf4c cb31369 d08fbc6 e7f788e 100c2eb 5fe31b7 e7f788e 0a1b314 e7f788e 058c80a e7f788e 5fe31b7 0a1b314 5fe31b7 058c80a e7f788e 5fe31b7 e7f788e 058c80a 5fe31b7 1fbdf4c a66b8be 36b5223 a66b8be 1fbdf4c cb31369 e7f788e 5fe31b7 e7f788e 5fe31b7 e7f788e 7b21e0b 5fe31b7 1fbdf4c cb31369 e7f788e a66b8be e7f788e 5fe31b7 7b21e0b 5fe31b7 e7f788e 7b21e0b e7f788e 5fe31b7 e7f788e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from abc import abstractmethod
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional, Union
from pkg_resources import DistributionNotFound, VersionConflict, require
from .artifact import Artifact
from .dataclass import InternalField, NonPositionalField
from .settings_utils import get_constants
from .stream import DynamicStream, EmptyStreamError, MultiStream, Stream
constants = get_constants()
class Operator(Artifact):
pass
class PackageRequirementsMixin(Artifact):
"""Base class used to automatically check for the existence of required Python dependencies for an artifact (e.g., Operator or Metric).
The _requirements_list is either a list of required packages or a dictionary mapping required packages to installation instructions.
- **List format**: Just specify the package names, optionally with version annotations (e.g., ["torch>=1.2.4", "numpy<1.19"]).
- **Dict format**: Specify package names as keys and installation instructions as values
(e.g., {"torch>=1.2.4": "Install torch with `pip install torch>=1.2.4`"}).
When a package version annotation is specified (like `torch>=1.2.4`), the `check_missing_requirements` method
verifies that the installed version meets the specified constraint.
"""
_requirements_list: Union[List[str], Dict[str, str]] = InternalField(
default_factory=list
)
def prepare(self):
self.check_missing_requirements()
super().prepare()
def check_missing_requirements(self, requirements=None):
if requirements is None:
requirements = self._requirements_list
if isinstance(requirements, list):
requirements = {package: "" for package in requirements}
missing_packages = []
version_mismatched_packages = []
installation_instructions = []
for package, installation_instruction in requirements.items():
try:
# Use pkg_resources.require to verify the package requirement
require(package)
except DistributionNotFound:
missing_packages.append(package)
installation_instructions.append(
installation_instruction
or f"Install {package} with `pip install {package}`"
)
except VersionConflict as e:
version_mismatched_packages.append(
f"{package} (installed: {e.dist.version}, required: {e.req})"
)
installation_instructions.append(
installation_instruction
or f"Update {package} to the required version with `pip install '{package}'`"
)
if missing_packages or version_mismatched_packages:
raise MissingRequirementsError(
self.__class__.__name__,
missing_packages,
version_mismatched_packages,
installation_instructions,
)
class MissingRequirementsError(Exception):
def __init__(
self,
class_name,
missing_packages,
version_mismatched_packages,
installation_instructions,
):
self.class_name = class_name
self.missing_packages = missing_packages
self.version_mismatched_packages = version_mismatched_packages
self.installation_instructions = installation_instructions
missing_message = (
f"Missing package(s): {', '.join(self.missing_packages)}."
if self.missing_packages
else ""
)
version_message = (
f"Version mismatch(es): {', '.join(self.version_mismatched_packages)}."
if self.version_mismatched_packages
else ""
)
self.message = (
f"{self.class_name} requires the following dependencies:\n"
f"{missing_message}\n{version_message}\n"
+ "\n".join(self.installation_instructions)
)
super().__init__(self.message)
class OperatorError(Exception):
def __init__(self, exception: Exception, operators: List[Operator]):
super().__init__(
"This error was raised by the following operators: "
+ ",\n".join([str(operator) for operator in operators])
+ "."
)
self.exception = exception
self.operators = operators
@classmethod
def from_operator_error(cls, exception: Exception, operator: Operator):
return cls(exception.exception, [*exception.operators, operator])
@classmethod
def from_exception(cls, exception: Exception, operator: Operator):
return cls(exception, [operator])
class StreamingOperator(Operator, PackageRequirementsMixin):
"""Base class for all stream operators in the streaming model.
Stream operators are a key component of the streaming model and are responsible for processing continuous data streams.
They perform operations such as transformations, aggregations, joins, windowing and more on these streams.
There are several types of stream operators, including source operators, processing operators, etc.
As a `StreamingOperator`, this class is responsible for performing operations on a stream, and must be implemented by all other specific types of stream operators in the system.
When called, a `StreamingOperator` must return a MultiStream.
As a subclass of `Artifact`, every `StreamingOperator` can be saved in a catalog for further usage or reference.
"""
@abstractmethod
def __call__(self, streams: Optional[MultiStream] = None) -> MultiStream:
"""Abstract method that performs operations on the stream.
Args:
streams (Optional[MultiStream]): The input MultiStream, which can be None.
Returns:
MultiStream: The output MultiStream resulting from the operations performed on the input.
"""
class SideEffectOperator(StreamingOperator):
"""Base class for operators that does not affect the stream."""
def __call__(self, streams: Optional[MultiStream] = None) -> MultiStream:
self.process()
return streams
@abstractmethod
def process() -> None:
pass
def instance_generator(instance):
yield instance
def stream_single(instance: Dict[str, Any]) -> Stream:
return DynamicStream(
generator=instance_generator, gen_kwargs={"instance": instance}
)
class MultiStreamOperator(StreamingOperator):
"""A class representing a multi-stream operator in the streaming system.
A multi-stream operator is a type of `StreamingOperator` that operates on an entire MultiStream object at once. It takes a `MultiStream` as input and produces a `MultiStream` as output. The `process` method should be implemented by subclasses to define the specific operations to be performed on the input `MultiStream`.
"""
caching: bool = NonPositionalField(default=None)
def __call__(
self, multi_stream: Optional[MultiStream] = None, **instance: Dict[str, Any]
) -> Union[MultiStream, Dict[str, Any]]:
self.before_process_multi_stream()
if instance:
if multi_stream is not None:
return self.process_instance(instance)
result = self._process_multi_stream(multi_stream)
if self.caching is not None:
result.set_caching(self.caching)
return result
def before_process_multi_stream(self):
pass
def _process_multi_stream(
self, multi_stream: Optional[MultiStream] = None
) -> MultiStream:
result = self.process(multi_stream)
assert isinstance(
result, MultiStream
), "MultiStreamOperator must return a MultiStream"
return result
@abstractmethod
def process(self, multi_stream: MultiStream) -> MultiStream:
pass
def process_instance(self, instance, stream_name=constants.instance_stream):
instance = self.verify_instance(instance)
multi_stream = MultiStream({stream_name: stream_single(instance)})
processed_multi_stream = self(multi_stream)
return instance_result(processed_multi_stream[stream_name])
class SourceOperator(MultiStreamOperator):
"""A class representing a source operator in the streaming system.
A source operator is responsible for generating the data stream from some source, such as a database or a file.
This is the starting point of a stream processing pipeline.
The ``SourceOperator`` class is a type of ``MultiStreamOperator``, which is a special type of ``StreamingOperator``
that generates an output stream but does not take any input streams.
When called, a ``SourceOperator`` invokes its ``process`` method, which should be implemented by all subclasses
to generate the required ``MultiStream``.
"""
def _process_multi_stream(
self, multi_stream: Optional[MultiStream] = None
) -> MultiStream:
result = self.process()
assert isinstance(
result, MultiStream
), "MultiStreamOperator must return a MultiStream"
return result
@abstractmethod
def process(self) -> MultiStream:
pass
class StreamInitializerOperator(SourceOperator):
"""A class representing a stream initializer operator in the streaming system.
A stream initializer operator is a special type of ``SourceOperator`` that is capable
of taking parameters during the stream generation process.
This can be useful in situations where the stream generation process needs to be
customized or configured based on certain parameters.
When called, a ``StreamInitializerOperator`` invokes its ``process`` method, passing any supplied
arguments and keyword arguments. The ``process`` method should be implemented by all subclasses
to generate the required ``MultiStream`` based on the given arguments and keyword arguments.
"""
caching: bool = NonPositionalField(default=None)
def __call__(self, *args, **kwargs) -> MultiStream:
multi_stream = self.process(*args, **kwargs)
if self.caching is not None:
multi_stream.set_caching(self.caching)
return self.process(*args, **kwargs)
@abstractmethod
def process(self, *args, **kwargs) -> MultiStream:
pass
def instance_result(result_stream):
result = list(result_stream)
if len(result) == 0:
return None
if len(result) == 1:
return result[0]
return result
class StreamOperator(MultiStreamOperator):
"""A class representing a single-stream operator in the streaming system.
A single-stream operator is a type of ``MultiStreamOperator`` that operates on individual
``Stream`` objects within a ``MultiStream``. It iterates through each ``Stream`` in the ``MultiStream``
and applies the ``process`` method.
The ``process`` method should be implemented by subclasses to define the specific operations
to be performed on each ``Stream``.
"""
apply_to_streams: List[str] = NonPositionalField(
default=None
) # None apply to all streams
dont_apply_to_streams: List[str] = NonPositionalField(default=None)
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
result = {}
for stream_name, stream in multi_stream.items():
if self._is_should_be_processed(stream_name):
stream = self._process_single_stream(stream, stream_name)
else:
stream = stream
assert isinstance(stream, Stream), "StreamOperator must return a Stream"
result[stream_name] = stream
return MultiStream(result)
def _process_single_stream(
self, stream: Stream, stream_name: Optional[str] = None
) -> Stream:
return DynamicStream(
self._process_stream,
gen_kwargs={"stream": stream, "stream_name": stream_name},
)
def _is_should_be_processed(self, stream_name):
if (
self.apply_to_streams is not None
and self.dont_apply_to_streams is not None
and stream_name in self.apply_to_streams
and stream_name in self.dont_apply_to_streams
):
raise ValueError(
f"Stream '{stream_name}' can be in either apply_to_streams or dont_apply_to_streams not both."
)
return (
self.apply_to_streams is None or stream_name in self.apply_to_streams
) and (
self.dont_apply_to_streams is None
or stream_name not in self.dont_apply_to_streams
)
def _process_stream(
self, stream: Stream, stream_name: Optional[str] = None
) -> Generator:
yield from self.process(stream, stream_name)
@abstractmethod
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
pass
def process_instance(self, instance, stream_name=constants.instance_stream):
instance = self.verify_instance(instance)
processed_stream = self._process_single_stream(
stream_single(instance), stream_name
)
return instance_result(processed_stream)
class SingleStreamOperator(StreamOperator):
pass
class PagedStreamOperator(StreamOperator):
"""A class representing a paged-stream operator in the streaming system.
A paged-stream operator is a type of ``StreamOperator`` that operates on a page of instances
in a ``Stream`` at a time, where a page is a subset of instances.
The ``process`` method should be implemented by subclasses to define the specific operations
to be performed on each page.
Args:
page_size (int):
The size of each page in the stream. Defaults to 1000.
"""
page_size: int = 1000
def _process_stream(
self, stream: Stream, stream_name: Optional[str] = None
) -> Generator:
page = []
for instance in stream:
page.append(instance)
if len(page) >= self.page_size:
yield from self.process(page, stream_name)
page = []
yield from self._process_page(page, stream_name)
def _process_page(
self, page: List[Dict], stream_name: Optional[str] = None
) -> Generator:
yield from self.process(page, stream_name)
@abstractmethod
def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
pass
def process_instance(self, instance, stream_name=constants.instance_stream):
instance = self.verify_instance(instance)
processed_stream = self._process_page([instance], stream_name)
return instance_result(processed_stream)
class SingleStreamReducer(StreamingOperator):
"""A class representing a single-stream reducer in the streaming system.
A single-stream reducer is a type of ``StreamingOperator`` that operates on individual
``Stream`` objects within a ``MultiStream`` and reduces each ``Stream`` to a single output value.
The ``process`` method should be implemented by subclasses to define the specific reduction operation
to be performed on each ``Stream``.
"""
def __call__(self, multi_stream: Optional[MultiStream] = None) -> Dict[str, Any]:
result = {}
for stream_name, stream in multi_stream.items():
stream = self.process(stream)
result[stream_name] = stream
return result
@abstractmethod
def process(self, stream: Stream) -> Stream:
pass
class InstanceOperator(StreamOperator):
"""A class representing a stream instance operator in the streaming system.
A stream instance operator is a type of ``StreamOperator`` that operates on individual instances
within a ``Stream``. It iterates through each instance in the ``Stream`` and applies the ``process`` method.
The ``process`` method should be implemented by subclasses to define the specific operations
to be performed on each instance.
"""
def _process_stream(
self, stream: Stream, stream_name: Optional[str] = None
) -> Generator:
try:
_index = None
for _index, instance in enumerate(stream):
yield self._process_instance(instance, stream_name)
except Exception as e:
if _index is None:
raise e
else:
raise ValueError(
f"Error processing instance '{_index}' from stream '{stream_name}' in {self.__class__.__name__} due to the exception above."
) from e
def _process_instance(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance = self.verify_instance(instance)
return self.process(instance, stream_name)
@abstractmethod
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
pass
def process_instance(self, instance, stream_name=constants.instance_stream):
return self._process_instance(instance, stream_name)
class InstanceOperatorValidator(InstanceOperator):
"""A class representing a stream instance operator validator in the streaming system.
A stream instance operator validator is a type of ``InstanceOperator`` that includes a validation step.
It operates on individual instances within a ``Stream`` and validates the result of processing each instance.
"""
@abstractmethod
def validate(self, instance):
pass
def _process_stream(
self, stream: Stream, stream_name: Optional[str] = None
) -> Generator:
iterator = iter(stream)
try:
first_instance = next(iterator)
except StopIteration as e:
raise EmptyStreamError(f"Stream '{stream_name}' is empty") from e
result = self._process_instance(first_instance, stream_name)
self.validate(result, stream_name)
yield result
yield from (
self._process_instance(instance, stream_name) for instance in iterator
)
class InstanceOperatorWithMultiStreamAccess(StreamingOperator):
"""A class representing an instance operator with global access in the streaming system.
An instance operator with global access is a type of `StreamingOperator` that operates on individual instances within a `Stream` and can also access other streams.
It uses the `accessible_streams` attribute to determine which other streams it has access to.
In order to make this efficient and to avoid qudratic complexity, it caches the accessible streams by default.
"""
def __call__(
self, multi_stream: Optional[MultiStream] = None, **instance: Dict[str, Any]
) -> MultiStream:
if instance:
raise NotImplementedError("Instance mode is not supported")
result = {}
for stream_name, stream in multi_stream.items():
stream = DynamicStream(
self.generator,
gen_kwargs={"stream": stream, "multi_stream": multi_stream},
)
result[stream_name] = stream
return MultiStream(result)
def generator(self, stream, multi_stream):
yield from (
self.process(self.verify_instance(instance), multi_stream)
for instance in stream
)
@abstractmethod
def process(self, instance: dict, multi_stream: MultiStream) -> dict:
pass
class SequentialMixin(Artifact):
max_steps: Optional[int] = None
steps: List[StreamingOperator] = field(default_factory=list)
def num_steps(self) -> int:
return len(self.steps)
def set_max_steps(self, max_steps):
assert (
max_steps <= self.num_steps()
), f"Max steps requested ({max_steps}) is larger than defined steps {self.num_steps()}"
assert max_steps >= 1, f"Max steps requested ({max_steps}) is less than 1"
self.max_steps = max_steps
def get_last_step_description(self):
last_step = (
self.max_steps - 1 if self.max_steps is not None else len(self.steps) - 1
)
return self.steps[last_step].__description__
def _get_max_steps(self):
return self.max_steps if self.max_steps is not None else len(self.steps)
class SequentialOperator(MultiStreamOperator, SequentialMixin):
"""A class representing a sequential operator in the streaming system.
A sequential operator is a type of `MultiStreamOperator` that applies a sequence of other operators to a
`MultiStream`. It maintains a list of `StreamingOperator`s and applies them in order to the `MultiStream`.
"""
def process(self, multi_stream: Optional[MultiStream] = None) -> MultiStream:
for operator in self.steps[0 : self._get_max_steps()]:
multi_stream = operator(multi_stream)
return multi_stream
class SourceSequentialOperator(SourceOperator, SequentialMixin):
"""A class representing a source sequential operator in the streaming system.
A source sequential operator is a type of `SequentialOperator` that starts with a source operator.
The first operator in its list of steps is a `SourceOperator`, which generates the initial `MultiStream`
that the other operators then process.
"""
def process(self, multi_stream: Optional[MultiStream] = None) -> MultiStream:
assert (
self.num_steps() > 0
), "Calling process on a SourceSequentialOperator without any steps"
multi_stream = self.steps[0]()
for operator in self.steps[1 : self._get_max_steps()]:
multi_stream = operator(multi_stream)
return multi_stream
class SequentialOperatorInitializer(SequentialOperator):
"""A class representing a sequential operator initializer in the streaming system.
A sequential operator initializer is a type of `SequntialOperator` that starts with a stream initializer operator. The first operator in its list of steps is a `StreamInitializerOperator`, which generates the initial `MultiStream` based on the provided arguments and keyword arguments.
"""
def __call__(self, *args, **kwargs) -> MultiStream:
return self.process(*args, **kwargs)
def process(self, *args, **kwargs) -> MultiStream:
assert (
self.num_steps() > 0
), "Calling process on a SequentialOperatorInitializer without any steps"
assert isinstance(
self.steps[0], StreamInitializerOperator
), "The first step in a SequentialOperatorInitializer must be a StreamInitializerOperator"
multi_stream = self.steps[0](*args, **kwargs)
for operator in self.steps[1 : self._get_max_steps()]:
multi_stream = operator(multi_stream)
return multi_stream
|