File size: 35,386 Bytes
f786e3b
 
 
d443ad5
f786e3b
 
61747f5
f786e3b
 
d08fbc6
 
f786e3b
 
 
d08fbc6
 
f786e3b
0a1b314
d443ad5
 
 
 
 
 
 
 
0a1b314
 
 
 
f786e3b
 
058c80a
100c2eb
7e3fef8
cb669f3
d79bb48
0a1b314
d79bb48
cb669f3
fe70438
e3ab2c6
9564cbf
24df49f
e3ab2c6
100c2eb
cb669f3
e3ab2c6
fe70438
a873536
d79bb48
26a73a2
058c80a
18ed1aa
24df49f
058c80a
fe70438
26a73a2
d79bb48
18ed1aa
 
e3ab2c6
 
0a1b314
 
 
 
d08fbc6
0a1b314
 
 
 
 
 
 
 
 
4d23392
0a1b314
 
7e3fef8
87d48ff
4d23392
e3ab2c6
fe70438
 
 
 
382d4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
 
 
 
 
 
 
 
 
 
 
 
058c80a
0a1b314
 
 
 
24df49f
0a1b314
 
 
88c61d3
 
 
 
 
 
 
0a1b314
 
 
fe70438
 
 
 
0a1b314
 
fe70438
 
 
 
 
 
 
 
0a1b314
fe70438
0a1b314
 
e3ab2c6
 
d08fbc6
0a1b314
 
d08fbc6
0a1b314
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
 
 
 
 
 
 
 
 
e3ab2c6
 
 
7e3fef8
 
 
 
7cdc7d0
382d4f4
64c3236
4d23392
64c3236
 
 
 
 
 
 
 
058c80a
 
 
88c61d3
058c80a
64c3236
058c80a
e3ab2c6
382d4f4
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058c80a
fe70438
 
382d4f4
058c80a
 
 
382d4f4
 
 
fe70438
 
 
7e3fef8
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058c80a
fe70438
 
 
382d4f4
24df49f
058c80a
382d4f4
 
fe70438
0a1b314
24df49f
0a1b314
 
 
24df49f
88c61d3
 
0a1b314
fe70438
24df49f
382d4f4
 
 
 
 
 
 
24df49f
 
 
382d4f4
24df49f
 
 
 
 
382d4f4
fe70438
cb669f3
 
9564cbf
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9564cbf
 
72ea1b4
382d4f4
72ea1b4
9564cbf
fe70438
24df49f
0a1b314
 
87d48ff
fe70438
 
 
 
 
 
 
 
 
77d313a
 
 
fe70438
9564cbf
 
72ea1b4
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ea1b4
 
 
fe70438
 
 
72ea1b4
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
72ea1b4
 
 
 
 
 
 
fe70438
72ea1b4
 
d79bb48
 
 
 
 
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79bb48
0a1b314
64c3236
0a1b314
d79bb48
 
 
 
 
 
 
 
87d48ff
 
 
d79bb48
 
 
 
 
 
fe70438
d79bb48
 
fe70438
d79bb48
 
cb669f3
0a1b314
 
 
 
 
 
 
 
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb669f3
 
 
 
7e3fef8
d79bb48
 
7cdc7d0
d79bb48
0a1b314
 
fe70438
cb669f3
 
d79bb48
cb669f3
 
 
7e3fef8
cb669f3
7e3fef8
 
 
 
382d4f4
7e3fef8
 
382d4f4
7e3fef8
 
 
 
 
d79bb48
382d4f4
7e3fef8
 
cb669f3
 
 
 
 
 
 
7e3fef8
 
 
d79bb48
cb669f3
7e3fef8
 
 
cb669f3
 
 
 
 
 
d79bb48
 
 
 
 
f6ebc4f
cb669f3
f6ebc4f
cb669f3
7e3fef8
 
 
cb669f3
7e3fef8
 
cb669f3
 
 
87d48ff
 
cb669f3
fe70438
24df49f
0a1b314
 
fe70438
 
 
 
 
64c3236
 
cb669f3
 
 
 
 
 
56803e8
 
 
72ea1b4
382d4f4
56803e8
d79bb48
 
 
 
 
 
 
 
 
 
 
 
7e3fef8
 
 
 
 
 
 
18ed1aa
 
 
 
 
 
 
 
058c80a
18ed1aa
 
 
d79bb48
 
7cdc7d0
d79bb48
 
7cdc7d0
 
 
 
d79bb48
cb669f3
fe70438
a873536
 
 
0a1b314
 
 
 
a873536
 
d08fbc6
0a1b314
 
 
cc5f321
a873536
 
 
0a1b314
a873536
0a1b314
a873536
cc5f321
a873536
 
 
 
0a1b314
 
 
 
 
 
 
fe70438
 
 
0a1b314
a873536
d08fbc6
a873536
b462f85
 
 
d08fbc6
b462f85
 
 
0a1b314
b462f85
 
0a1b314
 
 
 
 
 
100c2eb
 
 
 
0a1b314
 
b462f85
 
 
 
058c80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
24df49f
0a1b314
 
fe70438
 
 
0a1b314
 
 
d08fbc6
0a1b314
 
d08fbc6
0a1b314
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
 
d08fbc6
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100c2eb
0a1b314
 
 
100c2eb
0a1b314
100c2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
 
 
100c2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1b314
100c2eb
 
 
 
 
 
 
 
 
 
 
 
0a1b314
fe70438
24df49f
0a1b314
 
fe70438
 
100c2eb
0a1b314
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
"""This section describes unitxt loaders.

Loaders: Generators of Unitxt Multistreams from existing date sources
=====================================================================

Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.

Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off-the-shelf operators (i.e., picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.

Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource is
straightforward.

Available Loaders Overview:
    - :class:`LoadHF <unitxt.loaders.LoadHF>` - Loads data from HuggingFace Datasets.
    - :class:`LoadCSV <unitxt.loaders.LoadCSV>` - Imports data from CSV (Comma-Separated Values) files.
    - :class:`LoadFromKaggle <unitxt.loaders.LoadFromKaggle>` - Retrieves datasets from the Kaggle community site.
    - :class:`LoadFromIBMCloud <unitxt.loaders.LoadFromIBMCloud>` - Fetches datasets hosted on IBM Cloud.
    - :class:`LoadFromSklearn <unitxt.loaders.LoadFromSklearn>` - Loads datasets available through the sklearn library.
    - :class:`MultipleSourceLoader <unitxt.loaders.MultipleSourceLoader>` - Combines data from multiple different sources.
    - :class:`LoadFromDictionary <unitxt.loaders.LoadFromDictionary>` - Loads data from a user-defined Python dictionary.
    - :class:`LoadFromHFSpace <unitxt.loaders.LoadFromHFSpace>` - Downloads and loads data from HuggingFace Spaces.




------------------------
"""

import fnmatch
import itertools
import os
import tempfile
from abc import abstractmethod
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, Dict, Iterable, List, Mapping, Optional, Sequence, Union

import pandas as pd
from datasets import IterableDatasetDict
from datasets import load_dataset as hf_load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm

from .dataclass import OptionalField
from .fusion import FixedFusion
from .logging_utils import get_logger
from .operator import SourceOperator
from .operators import Set
from .settings_utils import get_settings
from .stream import MultiStream
from .type_utils import isoftype
from .utils import LRUCache

logger = get_logger()
settings = get_settings()


class Loader(SourceOperator):
    """A base class for all loaders.

    A loader is the first component in the Unitxt Recipe,
    responsible for loading data from various sources and preparing it as a MultiStream for processing.
    The loader_limit is an optional parameter used to control the maximum number of instances to load from the data source.  It is applied for each split separately.
    It is usually provided to the loader via the recipe (see standard.py)
    The loader can use this value to limit the amount of data downloaded from the source
    to reduce loading time.  However, this may not always be possible, so the
    loader may ignore this.  In any case, the recipe, will limit the number of instances in the returned
    stream, after load is complete.

    Args:
        loader_limit: Optional integer to specify a limit on the number of records to load.
        streaming: Bool indicating if streaming should be used.
        num_proc: Optional integer to specify the number of processes to use for parallel dataset loading. Adjust the value according to the number of CPU cores available and the specific needs of your processing task.
    """

    loader_limit: int = None
    streaming: bool = False
    num_proc: int = None

    # class level shared cache:
    _loader_cache = LRUCache(max_size=settings.loader_cache_size)

    def get_limit(self) -> int:
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            return min(int(settings.global_loader_limit), self.loader_limit)
        if settings.global_loader_limit is not None:
            return int(settings.global_loader_limit)
        return self.loader_limit

    def get_limiter(self):
        if settings.global_loader_limit is not None and self.loader_limit is not None:
            if int(settings.global_loader_limit) > self.loader_limit:
                return f"{self.__class__.__name__}.loader_limit"
            return "unitxt.settings.global_loader_limit"
        if settings.global_loader_limit is not None:
            return "unitxt.settings.global_loader_limit"
        return f"{self.__class__.__name__}.loader_limit"

    def log_limited_loading(self):
        logger.info(
            f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
        )

    def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
        if self.data_classification_policy is None:
            get_logger().warning(
                f"The {self.get_pretty_print_name()} loader does not set the `data_classification_policy`. "
                f"This may lead to sending of undesired data to external services.\n"
                f"Set it to a list of classification identifiers. \n"
                f"For example:\n"
                f"data_classification_policy = ['public']\n"
                f" or \n"
                f"data_classification_policy =['confidential','pii'])\n"
            )

        operator = Set(
            fields={"data_classification_policy": self.data_classification_policy}
        )
        return operator(multi_stream)

    def set_default_data_classification(
        self, default_data_classification_policy, additional_info
    ):
        if self.data_classification_policy is None:
            if additional_info is not None:
                logger.info(
                    f"{self.get_pretty_print_name()} sets 'data_classification_policy' to "
                    f"{default_data_classification_policy} by default {additional_info}.\n"
                    "To use a different value or remove this message, explicitly set the "
                    "`data_classification_policy` attribute of the loader.\n"
                )
            self.data_classification_policy = default_data_classification_policy

    @abstractmethod
    def load_iterables(self) -> Dict[str, Iterable]:
        pass

    def _maybe_set_classification_policy(self):
        pass

    def load_data(self) -> MultiStream:
        iterables = self.__class__._loader_cache.get(str(self), None)
        if iterables is None:
            iterables = self.load_iterables()
            self.__class__._loader_cache.max_size = settings.loader_cache_size
            self.__class__._loader_cache[str(self)] = iterables
        return MultiStream.from_iterables(iterables, copying=True)

    def process(self) -> MultiStream:
        self._maybe_set_classification_policy()
        return self.add_data_classification(self.load_data())


class LoadHF(Loader):
    """Loads datasets from the HuggingFace Hub.

    It supports loading with or without streaming,
    and it can filter datasets upon loading.

    Args:
        path:
            The path or identifier of the dataset on the HuggingFace Hub.
        name:
            An optional dataset name.
        data_dir:
            Optional directory to store downloaded data.
        split:
            Optional specification of which split to load.
        data_files:
            Optional specification of particular data files to load.
        revision:
            Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.
        streaming (bool):
            indicating if streaming should be used.
        filtering_lambda (str, optional):
            A lambda function for filtering the data after loading.
        num_proc (int, optional):
            Specifies the number of processes to use for parallel dataset loading.

    Example:
        Loading glue's mrpc dataset

        .. code-block:: python

            load_hf = LoadHF(path='glue', name='mrpc')
    """

    path: str
    name: Optional[str] = None
    data_dir: Optional[str] = None
    split: Optional[str] = None
    data_files: Optional[
        Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    ] = None
    revision: Optional[str] = None
    streaming: bool = True
    filtering_lambda: Optional[str] = None
    num_proc: Optional[int] = None
    requirements_list: List[str] = OptionalField(default_factory=list)

    def verify(self):
        for requirement in self.requirements_list:
            if requirement not in self._requirements_list:
                self._requirements_list.append(requirement)
        super().verify()

    def filter_load(self, dataset):
        if not settings.allow_unverified_code:
            raise ValueError(
                f"{self.__class__.__name__} cannot run use filtering_lambda expression without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE=True."
            )
        logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
        return dataset.filter(eval(self.filtering_lambda))

    def stream_dataset(self):
        with tempfile.TemporaryDirectory() as dir_to_be_deleted:
            if settings.disable_hf_datasets_cache and not self.streaming:
                cache_dir = dir_to_be_deleted
            else:
                cache_dir = None
            try:
                dataset = hf_load_dataset(
                    self.path,
                    name=self.name,
                    data_dir=self.data_dir,
                    data_files=self.data_files,
                    revision=self.revision,
                    streaming=self.streaming,
                    cache_dir=cache_dir,
                    split=self.split,
                    trust_remote_code=settings.allow_unverified_code,
                    num_proc=self.num_proc,
                )
            except ValueError as e:
                if "trust_remote_code" in str(e):
                    raise ValueError(
                        f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
                    ) from e
                raise e

        if self.split is not None:
            dataset = {self.split: dataset}

        if self.filtering_lambda is not None:
            dataset = self.filter_load(dataset)

        return dataset

    def load_dataset(self):
        with tempfile.TemporaryDirectory() as dir_to_be_deleted:
            if settings.disable_hf_datasets_cache:
                cache_dir = dir_to_be_deleted
            else:
                cache_dir = None
            try:
                dataset = hf_load_dataset(
                    self.path,
                    name=self.name,
                    data_dir=self.data_dir,
                    data_files=self.data_files,
                    streaming=False,
                    keep_in_memory=True,
                    cache_dir=cache_dir,
                    split=self.split,
                    trust_remote_code=settings.allow_unverified_code,
                    num_proc=self.num_proc,
                )
            except ValueError as e:
                if "trust_remote_code" in str(e):
                    raise ValueError(
                        f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
                    ) from e

        if self.split is None:
            for split in dataset.keys():
                dataset[split] = dataset[split].to_iterable_dataset()
        else:
            dataset = {self.split: dataset.to_iterable_dataset()}

        return dataset

    def _maybe_set_classification_policy(self):
        if os.path.exists(self.path):
            self.set_default_data_classification(
                ["proprietary"], "when loading from local files"
            )
        else:
            self.set_default_data_classification(
                ["public"],
                None,  # No warning when loading from public hub
            )

    def load_iterables(self) -> IterableDatasetDict:
        try:
            dataset = self.stream_dataset()
        except (
            NotImplementedError
        ):  # streaming is not supported for zipped files so we load without streaming
            dataset = self.load_dataset()

        if self.filtering_lambda is not None:
            dataset = self.filter_load(dataset)

        if self.get_limit() is not None:
            self.log_limited_loading()
            return {
                split_name: dataset[split_name].take(self.get_limit())
                for split_name in dataset
            }

        return dataset


class LoadCSV(Loader):
    """Loads data from CSV files.

    Supports streaming and can handle large files by loading them in chunks.

    Args:
        files (Dict[str, str]): A dictionary mapping names to file paths.
        chunksize : Size of the chunks to load at a time.
        loader_limit: Optional integer to specify a limit on the number of records to load.
        streaming: Bool indicating if streaming should be used.
        sep: String specifying the separator used in the CSV files.

    Example:
        Loading csv

        .. code-block:: python

            load_csv = LoadCSV(files={'train': 'path/to/train.csv'}, chunksize=100)
    """

    files: Dict[str, str]
    chunksize: int = 1000
    loader_limit: Optional[int] = None
    streaming: bool = True
    sep: str = ","

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from local files"
        )

    def load_iterables(self):
        iterables = {}
        for split_name, file_path in self.files.items():
            if self.get_limit() is not None:
                self.log_limited_loading()
                iterables[split_name] = pd.read_csv(
                    file_path, nrows=self.get_limit(), sep=self.sep
                ).to_dict("records")
            else:
                iterables[split_name] = pd.read_csv(file_path, sep=self.sep).to_dict(
                    "records"
                )
        return iterables


class LoadFromSklearn(Loader):
    """Loads datasets from the sklearn library.

    This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.

    Args:
        dataset_name: The name of the sklearn dataset to fetch.
        splits: A list of data splits to load, e.g., ['train', 'test'].

    Example:
        Loading form sklearn

        .. code-block:: python

            load_sklearn = LoadFromSklearn(dataset_name='iris', splits=['train', 'test'])
    """

    dataset_name: str
    splits: List[str] = ["train", "test"]

    _requirements_list: List[str] = ["scikit-learn", "pandas"]

    data_classification_policy = ["public"]

    def verify(self):
        super().verify()

        if self.streaming:
            raise NotImplementedError("LoadFromSklearn cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from sklearn import datasets as sklearn_datatasets

        self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")

    def load_iterables(self):
        with TemporaryDirectory() as temp_directory:
            for split in self.splits:
                split_data = self.downloader(subset=split)
                targets = [split_data["target_names"][t] for t in split_data["target"]]
                df = pd.DataFrame([split_data["data"], targets]).T
                df.columns = ["data", "target"]
                df.to_csv(os.path.join(temp_directory, f"{split}.csv"), index=None)
            return hf_load_dataset(temp_directory, streaming=False)


class MissingKaggleCredentialsError(ValueError):
    pass


class LoadFromKaggle(Loader):
    """Loads datasets from Kaggle.

    Requires Kaggle API credentials and does not support streaming.

    Args:
        url: URL to the Kaggle dataset.

    Example:
        Loading from kaggle

        .. code-block:: python

            load_kaggle = LoadFromKaggle(url='kaggle.com/dataset/example')
    """

    url: str

    _requirements_list: List[str] = ["opendatasets"]
    data_classification_policy = ["public"]

    def verify(self):
        super().verify()
        if not os.path.isfile("kaggle.json"):
            raise MissingKaggleCredentialsError(
                "Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
            )

        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def prepare(self):
        super().prepare()
        from opendatasets import download

        self.downloader = download

    def load_iterables(self):
        with TemporaryDirectory() as temp_directory:
            self.downloader(self.url, temp_directory)
            return hf_load_dataset(temp_directory, streaming=False)


class LoadFromIBMCloud(Loader):
    """Loads data from IBM Cloud Object Storage.

    Does not support streaming and requires AWS-style access keys.
    data_dir Can be either:
    1. a list of file names, the split of each file is determined by the file name pattern
    2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
    3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}

    Args:
        endpoint_url_env:
            Environment variable name for the IBM Cloud endpoint URL.
        aws_access_key_id_env:
            Environment variable name for the AWS access key ID.
        aws_secret_access_key_env:
            Environment variable name for the AWS secret access key.
        bucket_name:
            Name of the S3 bucket from which to load data.
        data_dir:
            Optional directory path within the bucket.
        data_files:
            Union type allowing either a list of file names or a mapping of splits to file names.
        data_field:
            The dataset key for nested JSON file, i.e. when multiple datasets are nested in the same file
        caching (bool):
            indicating if caching is enabled to avoid re-downloading data.

    Example:
        Loading from IBM Cloud

        .. code-block:: python

            load_ibm_cloud = LoadFromIBMCloud(
                endpoint_url_env='IBM_CLOUD_ENDPOINT',
                aws_access_key_id_env='IBM_AWS_ACCESS_KEY_ID',
                aws_secret_access_key_env='IBM_AWS_SECRET_ACCESS_KEY',
                bucket_name='my-bucket'
            )
            multi_stream = load_ibm_cloud.process()
    """

    endpoint_url_env: str
    aws_access_key_id_env: str
    aws_secret_access_key_env: str
    bucket_name: str
    data_dir: str = None

    data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    data_field: str = None
    caching: bool = True
    data_classification_policy = ["proprietary"]

    _requirements_list: List[str] = ["ibm-cos-sdk"]

    def _download_from_cos(self, cos, bucket_name, item_name, local_file):
        logger.info(f"Downloading {item_name} from {bucket_name} COS")
        try:
            response = cos.Object(bucket_name, item_name).get()
            size = response["ContentLength"]
            body = response["Body"]
        except Exception as e:
            raise Exception(
                f"Unabled to access {item_name} in {bucket_name} in COS", e
            ) from e

        if self.get_limit() is not None:
            if item_name.endswith(".jsonl"):
                first_lines = list(
                    itertools.islice(body.iter_lines(), self.get_limit())
                )
                with open(local_file, "wb") as downloaded_file:
                    for line in first_lines:
                        downloaded_file.write(line)
                        downloaded_file.write(b"\n")
                logger.info(
                    f"\nDownload successful limited to {self.get_limit()} lines"
                )
                return

        progress_bar = tqdm(total=size, unit="iB", unit_scale=True)

        def upload_progress(chunk):
            progress_bar.update(chunk)

        try:
            cos.Bucket(bucket_name).download_file(
                item_name, local_file, Callback=upload_progress
            )
            logger.info("\nDownload Successful")
        except Exception as e:
            raise Exception(
                f"Unabled to download {item_name} in {bucket_name}", e
            ) from e

    def prepare(self):
        super().prepare()
        self.endpoint_url = os.getenv(self.endpoint_url_env)
        self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
        self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
        root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
        self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")

        if not os.path.exists(self.cache_dir):
            Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
        self.verified = False

    def lazy_verify(self):
        super().verify()
        assert (
            self.endpoint_url is not None
        ), f"Please set the {self.endpoint_url_env} environmental variable"
        assert (
            self.aws_access_key_id is not None
        ), f"Please set {self.aws_access_key_id_env} environmental variable"
        assert (
            self.aws_secret_access_key is not None
        ), f"Please set {self.aws_secret_access_key_env} environmental variable"
        if self.streaming:
            raise NotImplementedError("LoadFromKaggle cannot load with streaming.")

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from IBM COS"
        )

    def load_iterables(self):
        if not self.verified:
            self.lazy_verify()
            self.verified = True
        import ibm_boto3

        cos = ibm_boto3.resource(
            "s3",
            aws_access_key_id=self.aws_access_key_id,
            aws_secret_access_key=self.aws_secret_access_key,
            endpoint_url=self.endpoint_url,
        )
        local_dir = os.path.join(
            self.cache_dir,
            self.bucket_name,
            self.data_dir or "",  # data_dir can be None
            f"loader_limit_{self.get_limit()}",
        )
        if not os.path.exists(local_dir):
            Path(local_dir).mkdir(parents=True, exist_ok=True)
        if isinstance(self.data_files, Mapping):
            data_files_names = list(self.data_files.values())
            if not isinstance(data_files_names[0], str):
                data_files_names = list(itertools.chain(*data_files_names))
        else:
            data_files_names = self.data_files

        for data_file in data_files_names:
            local_file = os.path.join(local_dir, data_file)
            if not self.caching or not os.path.exists(local_file):
                # Build object key based on parameters. Slash character is not
                # allowed to be part of object key in IBM COS.
                object_key = (
                    self.data_dir + "/" + data_file
                    if self.data_dir is not None
                    else data_file
                )
                with tempfile.NamedTemporaryFile() as temp_file:
                    # Download to  a temporary file in same file partition, and then do an atomic move
                    self._download_from_cos(
                        cos,
                        self.bucket_name,
                        object_key,
                        local_dir + "/" + os.path.basename(temp_file.name),
                    )
                    os.renames(
                        local_dir + "/" + os.path.basename(temp_file.name),
                        local_dir + "/" + data_file,
                    )

        if isinstance(self.data_files, list):
            dataset = hf_load_dataset(local_dir, streaming=False, field=self.data_field)
        else:
            dataset = hf_load_dataset(
                local_dir,
                streaming=False,
                data_files=self.data_files,
                field=self.data_field,
            )

        return dataset


class MultipleSourceLoader(Loader):
    """Allows loading data from multiple sources, potentially mixing different types of loaders.

    Args:
        sources: A list of loaders that will be combined to form a unified dataset.

    Examples:
        1) Loading the train split from a HuggingFace Hub and the test set from a local file:

        .. code-block:: python

            MultipleSourceLoader(sources = [ LoadHF(path="public/data",split="train"), LoadCSV({"test": "mytest.csv"}) ])



        2) Loading a test set combined from two files

        .. code-block:: python

            MultipleSourceLoader(sources = [ LoadCSV({"test": "mytest1.csv"}, LoadCSV({"test": "mytest2.csv"}) ])
    """

    sources: List[Loader]

    # MultipleSourceLoaders uses the the data classification from source loaders,
    # so only need to add it, if explicitly requested to override.
    def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
        if self.data_classification_policy is None:
            return multi_stream
        return super().add_data_classification(multi_stream)

    def load_iterables(self):
        pass

    def load_data(self):
        return FixedFusion(
            subsets=self.sources, max_instances_per_subset=self.get_limit()
        ).process()


class LoadFromDictionary(Loader):
    """Allows loading data from a dictionary of constants.

    The loader can be used, for example, when debugging or working with small datasets.

    Args:
        data (Dict[str, List[Dict[str, Any]]]): a dictionary of constants from which the data will be loaded

    Example:
        Loading dictionary

        .. code-block:: python

            data = {
                "train": [{"input": "SomeInput1", "output": "SomeResult1"},
                          {"input": "SomeInput2", "output": "SomeResult2"}],
                "test":  [{"input": "SomeInput3", "output": "SomeResult3"},
                          {"input": "SomeInput4", "output": "SomeResult4"}]
            }
            loader = LoadFromDictionary(data=data)
    """

    data: Dict[str, List[Dict[str, Any]]]

    def verify(self):
        super().verify()
        if not isoftype(self.data, Dict[str, List[Dict[str, Any]]]):
            raise ValueError(
                f"Passed data to LoadFromDictionary is not of type Dict[str, List[Dict[str, Any]]].\n"
                f"Expected data should map between split name and list of instances.\n"
                f"Received value: {self.data}\n"
            )
        for split in self.data.keys():
            if len(self.data[split]) == 0:
                raise ValueError(f"Split {split} has no instances.")
            first_instance = self.data[split][0]
            for instance in self.data[split]:
                if instance.keys() != first_instance.keys():
                    raise ValueError(
                        f"Not all instances in split '{split}' have the same fields.\n"
                        f"instance {instance} has different fields different from {first_instance}"
                    )

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["proprietary"], "when loading from python dictionary"
        )

    def load_iterables(self) -> MultiStream:
        return self.data


class LoadFromHFSpace(LoadHF):
    """Used to load data from HuggingFace Spaces.

    Loaders firstly tries to download all files specified in the 'data_files' parameter
    from the given space and then reads them as a HuggingFace Dataset.

    Args:
        space_name (str):
            Name of the HuggingFace Space to be accessed.
        data_files (str | Sequence[str] | Mapping[str, str | Sequence[str]]):
            Relative paths to files within a given repository. If given as a mapping,
            paths should be values, while keys should represent the type of respective files
            (training, testing etc.).
        path (str, optional):
            Absolute path to a directory where data should be downloaded.
        revision (str, optional):
            ID of a Git branch or commit to be used. By default, it is set to None,
            thus data is downloaded from the main branch of the accessed repository.
        use_token (bool, optional):
            Whether a token is used for authentication when accessing
            the HuggingFace Space. If necessary, the token is read from the HuggingFace
            config folder.
        token_env (str, optional):
            Key of an env variable which value will be used for
            authentication when accessing the HuggingFace Space - if necessary.

    Example:
        Loading from a HuggingFace Space

        .. code-block:: python

            loader = LoadFromHFSpace(
                space_name="lmsys/mt-bench",
                data_files={
                    "train": [
                        "data/mt_bench/model_answer/gpt-3.5-turbo.jsonl",
                        "data/mt_bench/model_answer/gpt-4.jsonl",
                    ],
                    "test": "data/mt_bench/model_answer/tulu-30b.jsonl",
                },
            )
    """

    space_name: str
    data_files: Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
    path: Optional[str] = None
    revision: Optional[str] = None
    use_token: Optional[bool] = None
    token_env: Optional[str] = None
    requirements_list: List[str] = ["huggingface_hub"]

    def _get_token(self) -> Optional[Union[bool, str]]:
        if self.token_env:
            token = os.getenv(self.token_env)
            if not token:
                get_logger().warning(
                    f"The 'token_env' parameter was specified as '{self.token_env}', "
                    f"however, no environment variable under such a name was found. "
                    f"Therefore, the loader will not use any tokens for authentication."
                )
            return token
        return self.use_token

    def _download_file_from_space(self, filename: str) -> str:
        from huggingface_hub import hf_hub_download
        from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError

        token = self._get_token()

        try:
            file_path = hf_hub_download(
                repo_id=self.space_name,
                filename=filename,
                repo_type="space",
                token=token,
                revision=self.revision,
                local_dir=self.path,
            )
        except EntryNotFoundError as e:
            raise ValueError(
                f"The file '{filename}' was not found in the space '{self.space_name}'. "
                f"Please check if the filename is correct, or if it exists in that "
                f"Huggingface space."
            ) from e
        except RepositoryNotFoundError as e:
            raise ValueError(
                f"The Huggingface space '{self.space_name}' was not found. "
                f"Please check if the name is correct and you have access to the space."
            ) from e

        return file_path

    def _download_data(self) -> str:
        if isinstance(self.data_files, str):
            data_files = [self.data_files]
        elif isinstance(self.data_files, Mapping):
            data_files = list(self.data_files.values())
        else:
            data_files = self.data_files

        dir_paths_list = []
        for files in data_files:
            if isinstance(files, str):
                files = [files]

            paths = [self._download_file_from_space(file) for file in files]
            dir_paths = [
                path.replace(file_url, "") for path, file_url in zip(paths, files)
            ]
            dir_paths_list.extend(dir_paths)

        # All files - within the same space - are downloaded into the same base directory:
        assert len(set(dir_paths_list)) == 1

        return f"{dir_paths_list.pop()}"

    @staticmethod
    def _is_wildcard(path: str) -> bool:
        wildcard_characters = ["*", "?", "[", "]"]
        return any(char in path for char in wildcard_characters)

    def _get_file_list_from_wildcard_path(
        self, pattern: str, repo_files: List
    ) -> List[str]:
        if self._is_wildcard(pattern):
            return fnmatch.filter(repo_files, pattern)
        return [pattern]

    def _map_wildcard_path_to_full_paths(self):
        api = HfApi()
        repo_files = api.list_repo_files(
            self.space_name, repo_type="space", revision=self.revision
        )
        if isinstance(self.data_files, str):
            self.data_files = self._get_file_list_from_wildcard_path(
                self.data_files, repo_files
            )
        elif isinstance(self.data_files, Mapping):
            new_mapping = {}
            for k, v in self.data_files.items():
                if isinstance(v, list):
                    assert all(isinstance(s, str) for s in v)
                    new_mapping[k] = [
                        file
                        for p in v
                        for file in self._get_file_list_from_wildcard_path(
                            p, repo_files
                        )
                    ]
                elif isinstance(v, str):
                    new_mapping[k] = self._get_file_list_from_wildcard_path(
                        v, repo_files
                    )
                else:
                    raise NotImplementedError(
                        f"Loader does not support input 'data_files' of type Mapping[{type(v)}]"
                    )

            self.data_files = new_mapping
        elif isinstance(self.data_files, list):
            assert all(isinstance(s, str) for s in self.data_files)
            self.data_files = [
                file
                for p in self.data_files
                for file in self._get_file_list_from_wildcard_path(p, repo_files)
            ]
        else:
            raise NotImplementedError(
                f"Loader does not support input 'data_files' of type {type(self.data_files)}"
            )

    def _maybe_set_classification_policy(self):
        self.set_default_data_classification(
            ["public"], "when loading from Huggingface spaces"
        )

    def load_data(self):
        self._map_wildcard_path_to_full_paths()
        self.path = self._download_data()
        return super().load_data()