File size: 38,163 Bytes
88c61d3 24df49f f418928 d08fbc6 88c61d3 f418928 88c61d3 f6ebc4f f418928 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 24df49f 88c61d3 b462f85 88c61d3 b462f85 88c61d3 24df49f 88c61d3 24df49f 88c61d3 24df49f 88c61d3 b462f85 88c61d3 f6ebc4f b462f85 88c61d3 b462f85 88c61d3 24df49f 88c61d3 f418928 88c61d3 24df49f 88c61d3 f6ebc4f 88c61d3 24df49f 88c61d3 b462f85 88c61d3 b462f85 88c61d3 b462f85 88c61d3 d08fbc6 88c61d3 d08fbc6 88c61d3 f6ebc4f 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 f6ebc4f cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 24df49f 357b16c 88c61d3 357b16c 88c61d3 24df49f 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 88c61d3 357b16c 88c61d3 cc5f321 24df49f 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 24df49f 88c61d3 cc5f321 88c61d3 24df49f 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 24df49f 88c61d3 cc5f321 24df49f 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 fe70438 88c61d3 fe70438 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 cc5f321 88c61d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
import itertools
from difflib import get_close_matches
from typing import Any, Dict, List, Optional, Union
from .api import infer
from .artifact import fetch_artifact
from .error_utils import UnitxtError
from .inference import (
InferenceEngine,
OptionSelectingByLogProbsInferenceEngine,
)
from .llm_as_judge_chat_templates import direct_template_dict, pairwise_template_dict
from .llm_as_judge_constants import (
DIRECT_CRITERIAS,
EVALUATOR_TO_MODEL_ID,
INFERENCE_ENGINE_NAME_TO_CLASS,
MODEL_RENAMINGS,
PAIRWISE_CRITERIAS,
PROVIDER_TO_STRATEGY,
Criteria,
CriteriaOption,
CriteriaWithOptions,
DirectCriteriaCatalogEnum,
EvaluatorMetadata,
EvaluatorNameEnum,
EvaluatorTypeEnum,
ModelProviderEnum,
# OptionSelectionStrategyEnum,
PairwiseCriteriaCatalogEnum,
)
from .llm_as_judge_from_template import LLMAsJudge, LLMAsJudgeBase, TaskBasedLLMasJudge
from .llm_as_judge_operators import (
CreateCriteriaFromDict,
CreateCriteriaFromJson,
CreateCriteriaFromString,
CreateCriteriaWithOptionsFromDict,
CreateCriteriaWithOptionsFromJson,
CreateYesNoCriteriaFromString,
CreateYesNoPartiallyCriteriaFromString,
LoadCriteria,
LoadCriteriaWithOptions,
)
from .llm_as_judge_utils import (
get_evaluator_metadata,
get_parsed_context,
rank_indexes,
rename_model_if_required,
)
from .logging_utils import get_logger
from .metrics import BulkInstanceMetric
from .task import Task
from .templates import Template
class LLMJudge(BulkInstanceMetric):
inference_engine: InferenceEngine
# option_selection_strategy: OptionSelectionStrategyEnum = (
# OptionSelectionStrategyEnum.PARSE_OUTPUT_TEXT
# )
evaluator_name: EvaluatorNameEnum = None
check_positional_bias: bool = True
context_fields: str = ["context"]
generate_summaries: bool = True
format = "formats.chat_api"
include_prompts_in_result: bool = False
criteria_field: str = None
criteria: Criteria = None
logger = get_logger()
def prepare(self):
super().prepare()
if isinstance(self.context_fields, str):
self.context_fields = [self.context_fields]
# if not isinstance(self.option_selection_strategy, OptionSelectionStrategyEnum):
# self.option_selection_strategy = OptionSelectionStrategyEnum[
# self.option_selection_strategy
# ]
if self.evaluator_name is None:
self.evaluator_name = self.inference_engine.get_engine_id()
elif not isinstance(self.evaluator_name, EvaluatorNameEnum):
self.evaluator_name = EvaluatorNameEnum[self.evaluator_name]
self.assessment_template = direct_template_dict["assessment"]
self.summarization_template = direct_template_dict["summarization"]
self.option_selection_template = direct_template_dict["answer"]
self.assessment_task = Task(
input_fields={
"context_variables": str,
"response": str,
"criteria_description": str,
"display_options_instruction": str,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.summarization_task = Task(
input_fields={"assessment": str},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.option_selection_task = Task(
input_fields={
"context_variables": str,
"response": str,
"display_options_instruction": str,
"assessment": str,
"criteria_description": str,
"score_option_instruction": str,
"options": list,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
# def verify(self):
# super().verify()
# if (
# self.option_selection_strategy
# == OptionSelectionStrategyEnum.PARSE_OPTION_LOGPROB
# and not isinstance(
# self.inference_engine, OptionSelectingByLogProbsInferenceEngine
# )
# ):
# raise ValueError(
# "The option selection strategy was set to 'PARSE_OPTION_LOGPROB' "
# f"which requires the inference engine '{self.inference_engine.get_pretty_print_name()}' "
# "to inherit from OptionSelectingByLogProbsInferenceEngine "
# )
def before_process_multi_stream(self):
super().before_process_multi_stream()
# We check the criteria here and not in verify(), because we want catalog
# may contain a partially initialized object, and verify() method
# is called when creating the object and not when using it.
if self.criteria is None and self.criteria_field is None:
raise UnitxtError(
f"You must set either the 'criteria' field of the {__class__.__name__} metric to define one criteria to evaluate on all instance, or set a 'criteria_field' of the metric to evaluate on each instance based on the criteria specified in that field of each instance."
)
return
def get_contexts(self, task_data: List[Dict[str, Any]]) -> List[Dict[str, str]]:
return [
get_parsed_context(
{
context_field: td[context_field]
for context_field in self.context_fields
}
)
for td in task_data
]
def perform_evaluation_step(
self,
instances: list,
task: Task,
template: Template,
previous_messages: Optional[List[Dict[str, str]]] = None,
):
outputs_dataset = infer(
instances,
task=task,
engine=self.inference_engine,
template=template,
format=self.format,
return_data=True,
previous_messages=previous_messages,
)
prompts: List[str] = [instance["source"] for instance in outputs_dataset]
raw_predictions: List[str] = [
instance["raw_prediction"] for instance in outputs_dataset
]
predictions: List[str] = [
instance["prediction"] for instance in outputs_dataset
]
return (prompts, raw_predictions, predictions)
def clean_results(self, results: Union[dict, list]):
if isinstance(results, list):
return [self.clean_results(x) for x in results]
cleaned = {
k: (v if not isinstance(v, dict) else self.clean_results(v))
for k, v in results.items()
if v is not None and not (isinstance(v, (list, dict)) and len(v) == 0)
}
# Remove the dictionary itself if it becomes empty
return {
k: v
for k, v in cleaned.items()
if not (isinstance(v, dict) and len(v) == 0)
}
class LLMJudgeDirect(LLMJudge):
criteria: CriteriaWithOptions = None
reduction_map = {"mean": ["score"]}
main_score = "score"
def prepare(self):
super().prepare()
self.assessment_template = direct_template_dict["assessment"]
self.summarization_template = direct_template_dict["summarization"]
self.option_selection_template = direct_template_dict["answer"]
self.assessment_task = Task(
input_fields={
"context_variables": str,
"response": str,
"criteria_description": str,
"display_options_instruction": str,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.summarization_task = Task(
input_fields={"assessment": str},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.option_selection_task = Task(
input_fields={
"criteria_description": str,
"score_option_instruction": str,
"options": list,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
def get_parsed_criteria(self, criteria: CriteriaWithOptions):
criteria_description = criteria.description
criteria_option_names = [o.name for o in criteria.options]
display_options_instruction = "Choose an answer:\n" + "\n".join(
[
f"- \"{o.name}\"{f' if {o.description}' if o.description != '' else ''}"
for o in criteria.options
]
)
score_option_instruction = "".join(
[f"Score {o.name}: {o.description}\n" for o in criteria.options]
)
return (
criteria_description,
criteria_option_names,
display_options_instruction,
score_option_instruction,
)
def get_criterias(self, task_data, eval_count):
if self.criteria is None:
self.logger.info("Reading criteria from the task_data")
criterias = [
fetch_artifact(task_data_instance["criteria"])[0]
for task_data_instance in task_data
]
else:
self.logger.info(
"Reading criteria from self. Criteria is a single CriteriaWithOptions, replicating it for all predictions"
)
if not isinstance(self.criteria, CriteriaWithOptions):
raise Exception(
f"The type of the criteria must be 'CriteriaWithOptions', instead it is of type '{type(self.criteria)}'"
)
criterias: List[CriteriaWithOptions] = [self.criteria] * eval_count
unique_criterias = list({criteria.name for criteria in criterias})
self.logger.info(f"Criteria names are '{', '.join(unique_criterias)}'")
return criterias
def get_results(
self,
assessment_prompts,
assessment_outputs,
summarization_prompts,
summarization_outputs,
option_selection_prompts,
option_selection_outputs,
selections,
evaluations_count,
criterias: List[CriteriaWithOptions],
) -> List[Dict[str, Any]]:
positional_bias = None
if self.check_positional_bias:
positional_bias = [
selections[i] != selections[evaluations_count + i]
for i in range(evaluations_count)
]
scores = [
criteria.option_map[selection] if criteria.option_map is not None else 1
for criteria, selection in zip(criterias, selections)
]
return [
{
"score": scores[i],
"llm_as_a_judge_score": scores[i],
"positional_bias": positional_bias[i]
if self.check_positional_bias
else None,
"selected_option": selections[i],
"positional_bias_selected_option": selections[evaluations_count + i]
if self.check_positional_bias
else None,
"assessment": assessment_outputs[i],
"positional_bias_assessment": assessment_outputs[i + evaluations_count]
if self.check_positional_bias
else None,
"summary": summarization_outputs[i]
if self.generate_summaries
else None,
"prompts": {
"assessment": assessment_prompts[i],
"positional_bias_assessment": assessment_prompts[
evaluations_count + i
]
if self.check_positional_bias
else None,
"summarization": summarization_prompts[i]
if self.generate_summaries
else None,
"option_selection": option_selection_prompts[i],
"posional_bias_option_selection": option_selection_prompts[
i + evaluations_count
]
if self.check_positional_bias
else None,
}
if self.include_prompts_in_result
else None,
"option_selection_completion": option_selection_outputs[i],
"positional_bias_option_selection_completion": option_selection_outputs[
evaluations_count + i
]
if self.check_positional_bias
else None,
"criteria": criterias[i].to_json(),
}
for i in range(evaluations_count)
]
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict[str, Any]],
) -> dict:
self.logger.info(
f'Starting evaluation with evaluator "{self.evaluator_name}" and provider "{self.inference_engine.get_pretty_print_name()}'
)
evaluations_count = len(predictions)
# TODO: find out how to serialize and deserialize enums
criterias = self.get_criterias(task_data, evaluations_count)
contexts = self.get_contexts(task_data)
if self.check_positional_bias:
criterias += [
CriteriaWithOptions(
name=criteria.name,
description=criteria.description,
option_map=criteria.option_map,
options=list(reversed(criteria.options)),
)
for criteria in criterias
]
contexts += contexts
predictions += predictions
parsed_criterias = [
self.get_parsed_criteria(criteria) for criteria in criterias
]
(
criteria_description_list,
criteria_option_names_list,
display_options_instruction_list,
score_option_instruction_list,
) = zip(*parsed_criterias)
assessment_for_summaries_slice = slice(0, evaluations_count)
assessment_instances = [
{
"context_variables": context,
"response": prediction,
"display_options_instruction": display_options_instruction,
"criteria_description": criteria_description,
"data_classification_policy": ["public"],
}
for context, prediction, criteria_description, display_options_instruction in zip(
contexts,
predictions,
criteria_description_list,
display_options_instruction_list,
)
]
assessment_prompts, assessment_outputs, _ = self.perform_evaluation_step(
assessment_instances, self.assessment_task, self.assessment_template
)
self.logger.info("The assessment was generated successfully.")
summarization_prompts = None
summarization_outputs = None
if self.generate_summaries:
# Summarisation Stage
summarization_instances = [
{
"assessment": assessment_output,
"data_classification_policy": ["public"],
}
for assessment_output in assessment_outputs[
assessment_for_summaries_slice
]
]
(
summarization_prompts,
summarization_outputs,
_,
) = self.perform_evaluation_step(
summarization_instances,
self.summarization_task,
self.summarization_template,
)
self.logger.info("The summary was generated successfully.")
option_selection_instances = [
{
"criteria_description": criteria_description,
"score_option_instruction": score_option_instruction,
"options": criteria_option_names,
"data_classification_policy": ["public"],
}
for criteria_description, score_option_instruction, criteria_option_names in zip(
criteria_description_list,
score_option_instruction_list,
criteria_option_names_list,
)
]
previous_messages = [
[assessment_prompt[0], {"role": "assistant", "content": assessment_output}]
for assessment_prompt, assessment_output in zip(
assessment_prompts, assessment_outputs
)
]
(
option_selection_prompts,
option_selection_outputs,
selections,
) = self.perform_evaluation_step(
option_selection_instances,
self.option_selection_task,
self.option_selection_template,
previous_messages,
)
self.logger.info("The selections were calculated successfully.")
results = self.get_results(
assessment_prompts,
assessment_outputs,
summarization_prompts,
summarization_outputs,
option_selection_prompts,
option_selection_outputs,
selections,
evaluations_count,
criterias,
)
return self.clean_results(results)
class LLMJudgePairwise(LLMJudge):
reduction_map = {"mean": ["score"]}
main_score = "score"
prediction_type = List[str]
def prepare(self):
super().prepare()
self.assessment_template = pairwise_template_dict["assessment"]
self.summarization_template = pairwise_template_dict["summarization"]
self.option_selection_template = pairwise_template_dict["answer"]
self.assessment_task = Task(
input_fields={
"context_variables": str,
"response_a": str,
"response_b": str,
"option_a": str,
"option_b": str,
"criteria_name": str,
"criteria_description": str,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.summarization_task = Task(
input_fields={"assessment": str},
reference_fields={},
prediction_type=str,
metrics=[],
)
self.option_selection_task = Task(
input_fields={
"score_option_instruction": str,
"options": list,
},
reference_fields={},
prediction_type=str,
metrics=[],
)
def get_criterias(self, task_data, eval_count):
if self.criteria is None:
if self.criteria_field not in task_data[0]:
raise UnitxtError(
f"The criteria field `{self.criteria_field}` required for {__class__.__name__} is not found in instance. Perhaps you meant '{get_close_matches(self.criteria_field, task_data[0].keys(), n=1, cutoff=0.0)[0]}'?"
)
self.logger.info(
f"Reading criteria from the task_data field f{self.criteria_field}"
)
criterias = [
fetch_artifact(task_data_instance[self.criteria_field])[0]
for task_data_instance in task_data
]
else:
self.logger.info(
"Reading criteria from self. Criteria is a single Criteria, replicating it for all predictions"
)
if not isinstance(self.criteria, Criteria):
raise UnitxtError(
f"The type of the criteria must be 'Criteria', instead it is of type '{type(self.criteria)}'"
)
criterias: List[Criteria] = [self.criteria] * eval_count
unique_criterias = list({criteria.name for criteria in criterias})
self.logger.info(f"Criteria names are '{', '.join(unique_criterias)}'")
return criterias
def get_instance_results(
self,
instance_predictions: Dict[str, str],
assessment_prompts,
assessment_outputs,
summarization_prompts,
summarization_outputs,
option_selection_prompts,
option_selection_outputs,
selections,
contests_count,
combination_indexes,
criteria: Criteria,
):
response_names = list(instance_predictions.keys())
per_response_results = {
response_key: {
"summaries": [],
"contest_results": [],
"selections": [],
"compared_to": [],
"assessments": [],
"positional_bias_assessments": [],
"option_selection_outputs": [],
"positional_bias": [],
"positional_bias_selection": [],
"prompts": {
"assessment": [],
"positional_bias_assessment": [],
"option_selection": [],
"positional_bias_option_selection": [],
"summary": [],
},
}
for response_key in response_names
}
positional_bias = None
for i in range(contests_count):
positional_bias_i = contests_count + i
(idx_1, idx_2) = combination_indexes[i]
response_name_1 = response_names[idx_1]
response_name_2 = response_names[idx_2]
# add contest results
selected_response_name = selections[i]
per_response_results[response_name_1]["contest_results"].append(
selected_response_name == response_name_1
)
per_response_results[response_name_2]["contest_results"].append(
selected_response_name == response_name_2
)
per_response_results[response_name_1]["assessments"].append(
assessment_outputs[i]
)
per_response_results[response_name_2]["assessments"].append(
assessment_outputs[i]
)
per_response_results[response_name_1]["selections"].append(
selected_response_name
)
per_response_results[response_name_2]["selections"].append(
selected_response_name
)
# add the response indexes to which the response was compared to
per_response_results[response_name_1]["compared_to"].append(
f"{response_name_2}"
)
per_response_results[response_name_2]["compared_to"].append(
f"{response_name_1}"
)
if self.include_prompts_in_result:
per_response_results[response_name_1]["prompts"]["assessment"].append(
assessment_prompts[i]
)
per_response_results[response_name_2]["prompts"]["assessment"].append(
assessment_prompts[i]
)
if self.generate_summaries:
# add summaries
if self.include_prompts_in_result:
per_response_results[response_name_1]["prompts"]["summary"].append(
summarization_prompts[i]
)
per_response_results[response_name_2]["prompts"]["summary"].append(
summarization_prompts[i]
)
per_response_results[response_name_1]["summaries"].append(
summarization_outputs[i]
)
per_response_results[response_name_2]["summaries"].append(
summarization_outputs[i]
)
if self.include_prompts_in_result:
per_response_results[response_name_1]["prompts"][
"option_selection"
].append(option_selection_prompts[i])
per_response_results[response_name_2]["prompts"][
"option_selection"
].append(option_selection_prompts[i])
## add positional bias
if self.check_positional_bias:
per_response_results[response_name_1][
"positional_bias_assessments"
].append(assessment_outputs[positional_bias_i])
per_response_results[response_name_2][
"positional_bias_assessments"
].append(assessment_outputs[positional_bias_i])
positional_bias = selections[i] != selections[positional_bias_i]
per_response_results[response_name_1]["positional_bias"].append(
positional_bias
)
per_response_results[response_name_2]["positional_bias"].append(
positional_bias
)
# add prompts
if self.include_prompts_in_result:
per_response_results[response_name_1]["prompts"][
"positional_bias_assessment"
].append(assessment_prompts[positional_bias_i])
per_response_results[response_name_2]["prompts"][
"positional_bias_assessment"
].append(assessment_prompts[positional_bias_i])
per_response_results[response_name_1]["prompts"][
"positional_bias_option_selection"
].append(option_selection_prompts[positional_bias_i])
per_response_results[response_name_2]["prompts"][
"positional_bias_option_selection"
].append(option_selection_prompts[positional_bias_i])
per_response_results[response_name_1]["option_selection_outputs"].append(
option_selection_outputs[i]
)
per_response_results[response_name_2]["option_selection_outputs"].append(
option_selection_outputs[i]
)
if self.check_positional_bias:
per_response_results[response_name_1][
"positional_bias_selection"
].append(option_selection_outputs[positional_bias_i])
per_response_results[response_name_2][
"positional_bias_selection"
].append(option_selection_outputs[positional_bias_i])
# add winrate
for key in response_names:
contest_results = per_response_results[key]["contest_results"]
winrate = sum(contest_results) / len(contest_results)
per_response_results[key]["winrate"] = winrate
per_response_results[key]["llm_as_a_judge_score"] = winrate
# calculate ranking
ranking = rank_indexes(
[result["winrate"] for result in per_response_results.values()]
)
for response_name, r_i in zip(response_names, ranking):
per_response_results[response_name]["ranking"] = ranking[r_i] + 1
for response_name in response_names:
# add response name
per_response_results[response_name]["response_name"] = response_name
all_results = {}
for response_name in response_names:
single_result = per_response_results[response_name]
for metric in single_result.keys():
all_results[f"{response_name}_{metric}"] = single_result[metric]
winrates = [r["winrate"] for r in per_response_results.values()]
all_results["score"] = max(range(len(winrates)), key=winrates.__getitem__)
all_results["criteria"] = criteria.to_json()
return self.clean_results(all_results)
def parse_prediction_to_dict(self, prediction: Union[Dict[str, str], List[str]]):
if isinstance(prediction, list):
return {f"{key + 1}": value for key, value in enumerate(prediction)}
if isinstance(prediction, dict):
return prediction
raise Exception(
f"Prediction may be a list or a dict. Instead got type {type(prediction)}"
)
def convert_predictions_to_dicts(
self, predictions: Union[List[Dict[str, str]], List[str]]
):
return [self.parse_prediction_to_dict(prediction) for prediction in predictions]
def compute(
self,
references: List[List[str]],
predictions: Union[List[Dict[str, str]], List[str]],
task_data: List[Dict[str, str]],
) -> dict:
self.logger.info(
f'Starting evaluation with evaluator "{self.evaluator_name}" and provider {self.inference_engine.get_pretty_print_name()}'
)
predictions = self.convert_predictions_to_dicts(predictions)
instances_count = len(predictions)
self.reduction_map["mean"].extend(
[f"{key}_winrate" for key in predictions[0].keys()]
)
self.reduction_map["mean"].extend(
[f"{key}_ranking" for key in predictions[0].keys()]
)
predictions_count_list = [len(prediction) for prediction in predictions]
combination_indexes_list = [
list(itertools.combinations(range(evaluations_count), 2))
for evaluations_count in predictions_count_list
]
contests_count_list = [
len(combination_indexes) for combination_indexes in combination_indexes_list
]
self.logger.info(
f"The evaluation will perform {sum(contests_count_list) * [1,2][self.check_positional_bias]} ({' + '.join([f'{c * [1,2][self.check_positional_bias]}' for c in contests_count_list])}) pairwise comparisons"
)
response_pairs_list: List[List[List[str]]] = []
option_pairs_list: List[List[List[str]]] = []
predictions_names = set(predictions[0].keys())
for i, combination_indexes in enumerate(combination_indexes_list):
instance_predictions = predictions[i]
instance_predictions_names = list(instance_predictions.keys())
if set(instance_predictions_names) != predictions_names:
raise Exception(
f"The set of prediction names is different between instance 0 and instance {i}. In prediction 0, it is {sorted(predictions_names)}. In prediction {i}, it is {sorted(instance_predictions_names)}. Make sure the same number of predictions is passed for all instances."
)
response_pairs: List[List[str]] = []
option_pairs: List[List[str]] = []
for combination in combination_indexes:
(idx_1, idx_2) = combination
response_name_1 = instance_predictions_names[idx_1]
response_name_2 = instance_predictions_names[idx_2]
response_pairs.append(
[
instance_predictions[response_name_1],
instance_predictions[response_name_2],
]
)
option_pairs.append([response_name_1, response_name_2])
response_pairs_list.append(response_pairs)
option_pairs_list.append(option_pairs)
criterias = self.get_criterias(task_data, instances_count)
contexts = self.get_contexts(task_data)
if self.check_positional_bias:
criterias.extend(criterias)
contexts.extend(contexts)
for response_pairs, option_pairs in zip(
response_pairs_list, option_pairs_list
):
response_pairs += [
list(reversed(response_pair)) for response_pair in response_pairs
]
option_pairs += [
list(reversed(option_pair)) for option_pair in option_pairs
]
assessment_instances = [
{
"context_variables": contexts[i],
"response_a": response_pair[0],
"response_b": response_pair[1],
"option_a": option_pair[0],
"option_b": option_pair[1],
"criteria_name": criterias[i].name,
"criteria_description": criterias[i].description,
"data_classification_policy": ["public"],
}
for i, (response_pairs, option_pairs) in enumerate(
zip(response_pairs_list, option_pairs_list)
)
for response_pair, option_pair in zip(response_pairs, option_pairs)
]
assessment_prompts, assessment_outputs, _ = self.perform_evaluation_step(
assessment_instances, self.assessment_task, self.assessment_template
)
self.logger.info("The assessment was generated successfully.")
# the slices used to get the assessment for each summary generation instance
# it will grab the whole assessment for a particular instance or half of it depending on the value of check_positional_bias
incremental_contests_count_list = [
sum(contests_count_list[: i + 1]) for i in range(len(contests_count_list))
]
# Summarisation Stage
summarization_prompts = None
summarization_outputs = None
if self.generate_summaries:
incremental_contests_count_with_positional_bias_list = [
incremental_contests_count * [1, 2][self.check_positional_bias]
for incremental_contests_count in incremental_contests_count_list
]
assessment_for_summaries_slice_list = [
slice(
incremental_contests_count_with_positional_bias_list[i - 1]
if i > 0
else 0,
(
incremental_contests_count_with_positional_bias_list[i - 1]
if i > 0
else 0
)
+ contests_count_list[i],
)
for i in range(len(contests_count_list))
]
summarization_instances = [
{
"assessment": assessment_output,
"data_classification_policy": ["public"],
}
for assessment_for_summaries_slice in assessment_for_summaries_slice_list
for assessment_output in assessment_outputs[
assessment_for_summaries_slice
]
]
(
summarization_prompts,
summarization_outputs,
_,
) = self.perform_evaluation_step(
summarization_instances,
self.summarization_task,
self.summarization_template,
)
self.logger.info("The summary was generated successfully.")
score_option_instruction_list = [
"".join(
[
f'Choose "{option}" if Response {option} is better quality.\n'
for option in option_pair
]
)
for option_pairs in option_pairs_list
for option_pair in option_pairs
]
option_selection_instances = [
{
"options": [f"Response {option}" for option in option_pair],
"score_option_instruction": score_option_instruction,
"data_classification_policy": ["public"],
}
for option_pair, score_option_instruction in zip(
[
option_pair
for option_pairs in option_pairs_list
for option_pair in option_pairs
],
score_option_instruction_list,
)
]
previous_messages = [
[assessment_prompt[0], {"role": "assistant", "content": assessment_output}]
for assessment_prompt, assessment_output in zip(
assessment_prompts, assessment_outputs
)
]
(
option_selection_prompts,
option_selection_outputs,
selections,
) = self.perform_evaluation_step(
option_selection_instances,
self.option_selection_task,
self.option_selection_template,
previous_messages,
)
# Selections are of the form 'Response n', so we just keep n
selections = [selection.split(" ")[-1] for selection in selections]
self.logger.info("The selections were calculated successfully.")
results = []
slice_start = 0
for i, incremental_contests_count in enumerate(incremental_contests_count_list):
slice_end = slice_start + contests_count_list[i]
if self.check_positional_bias:
slice_end += contests_count_list[i]
sli = slice(slice_start, slice_end)
sli_summarization = slice(
(incremental_contests_count_list[i - 1] if i > 0 else 0),
(incremental_contests_count_list[i - 1] if i > 0 else 0)
+ incremental_contests_count,
)
instance_results = self.get_instance_results(
predictions[i],
assessment_prompts[sli],
assessment_outputs[sli],
summarization_prompts[sli_summarization]
if self.generate_summaries
else None,
summarization_outputs[sli_summarization]
if self.generate_summaries
else None,
option_selection_prompts[sli],
option_selection_outputs[sli],
selections[sli],
contests_count_list[i],
combination_indexes_list[i],
criterias[i],
)
results.append(instance_results)
slice_start = slice_end
return results
|