File size: 25,974 Bytes
0e3c8e6
4d7f032
c6d1c21
 
 
058c80a
5ba849c
e80560b
058c80a
c6d1c21
9bd3d0e
 
 
 
 
 
 
 
fe70438
ba3eb02
a180fb2
 
 
058c80a
eac4eaf
fe70438
cc5f321
 
 
 
 
 
ba3eb02
 
a56f87d
058c80a
 
 
 
 
 
 
 
 
 
 
c6d1c21
 
88c61d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
ba0637a
eac4eaf
e80560b
fe70438
ba0637a
 
c6d1c21
ba0637a
a180fb2
 
ba0637a
 
fe70438
 
a180fb2
 
fe70438
a180fb2
 
fe70438
a180fb2
ba0637a
fe70438
e80560b
fe70438
 
 
 
 
 
 
e80560b
fe70438
 
 
 
 
214d47a
 
fe70438
214d47a
c6d1c21
357b16c
 
 
 
 
 
 
 
 
 
 
 
eac4eaf
 
0e3c8e6
 
 
 
 
 
 
 
e80560b
0e3c8e6
214d47a
 
0e3c8e6
214d47a
 
0e3c8e6
 
 
e80560b
0e3c8e6
e80560b
f6ebc4f
e80560b
0e3c8e6
 
 
eac4eaf
c6d1c21
 
058c80a
88c61d3
 
 
9bd3d0e
01f9603
 
9bd3d0e
01f9603
 
 
4a664e8
5ba849c
 
 
 
 
 
0a1b314
 
 
 
c6d1c21
357b16c
 
 
 
 
 
c6d1c21
0e3c8e6
214d47a
0e3c8e6
e80560b
 
 
058c80a
e80560b
058c80a
 
0e3c8e6
c3f3d16
 
 
 
c6d1c21
 
eac4eaf
 
ba3eb02
c6d1c21
 
ba3eb02
c6d1c21
 
 
214d47a
c6d1c21
7391dc4
228b86b
c6d1c21
c3f3d16
 
c6d1c21
 
 
 
214d47a
 
 
 
c6d1c21
 
 
 
e80560b
c6d1c21
 
 
214d47a
 
 
 
ba3eb02
 
 
 
 
214d47a
 
 
 
c6d1c21
a180fb2
 
c6d1c21
a180fb2
c6d1c21
a180fb2
 
 
c6d1c21
 
a180fb2
 
f6ebc4f
 
 
e80560b
a180fb2
c6d1c21
 
a180fb2
 
 
214d47a
c6d1c21
 
 
a180fb2
228b86b
5ba849c
 
 
 
 
a180fb2
01f9603
4a664e8
c6d1c21
0a1b314
 
 
 
 
eac4eaf
5ba849c
 
c6d1c21
88c61d3
 
 
eac4eaf
 
 
c3f3d16
 
287304a
c3f3d16
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
eac4eaf
 
058c80a
eac4eaf
 
e80560b
 
 
eac4eaf
357b16c
eac4eaf
 
0a1b314
88c61d3
b462f85
 
 
eac4eaf
c3f3d16
f6ebc4f
 
 
 
 
d389578
 
 
 
 
 
 
f6ebc4f
 
 
 
 
 
eac4eaf
058c80a
ba3eb02
058c80a
 
 
 
 
 
 
 
88c61d3
 
 
 
 
 
 
058c80a
 
0a1b314
 
 
 
 
 
 
 
 
 
88c61d3
357b16c
88c61d3
0a1b314
 
 
 
88c61d3
 
357b16c
 
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
88c61d3
0a1b314
 
 
 
 
 
 
 
 
fe70438
 
 
 
0a1b314
 
fe70438
0a1b314
 
 
 
fe70438
 
0a1b314
 
 
 
 
 
 
fe70438
0a1b314
 
 
 
 
 
fe70438
 
0a1b314
 
 
 
88c61d3
 
 
 
 
c6d1c21
5ba849c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287304a
 
 
 
 
 
 
 
 
 
 
 
 
cc5f321
287304a
 
c6d1c21
 
 
 
 
 
fe70438
a56f87d
 
c6d1c21
 
 
 
 
 
 
 
a180fb2
 
 
 
c6d1c21
fe70438
 
c6d1c21
fe70438
 
 
 
a56f87d
fe70438
 
c6d1c21
 
fe70438
f6ebc4f
 
 
d08fbc6
 
 
 
f6ebc4f
058c80a
5ba849c
 
058c80a
e80560b
f6ebc4f
 
5ba849c
 
 
a180fb2
5ba849c
 
 
f6ebc4f
 
 
fe70438
5ba849c
f6ebc4f
5ba849c
 
f6ebc4f
 
 
 
 
 
a180fb2
 
fe70438
 
a180fb2
 
 
fe70438
 
a180fb2
fe70438
 
 
c6d1c21
fe70438
c6d1c21
eac4eaf
228b86b
fe70438
 
eac4eaf
 
66c1161
228b86b
 
f0b2749
 
357b16c
 
 
 
c6d1c21
eac4eaf
c6d1c21
e80560b
ba3eb02
c6d1c21
 
ba3eb02
c6d1c21
 
 
 
e80560b
c6d1c21
 
 
 
ba3eb02
0a1b314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe70438
0a1b314
 
fe70438
 
0a1b314
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import difflib
import inspect
import json
import os
import pkgutil
import re
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Tuple, Union, final

from .dataclass import (
    AbstractField,
    Dataclass,
    Field,
    InternalField,
    NonPositionalField,
    fields,
)
from .error_utils import Documentation, UnitxtError, UnitxtWarning
from .logging_utils import get_logger
from .parsing_utils import (
    separate_inside_and_outside_square_brackets,
)
from .settings_utils import get_constants, get_settings
from .text_utils import camel_to_snake_case, is_camel_case
from .type_utils import isoftype, issubtype
from .utils import (
    artifacts_json_cache,
    json_dump,
    save_to_file,
    shallow_copy,
)

logger = get_logger()
settings = get_settings()
constants = get_constants()


def is_name_legal_for_catalog(name):
    return re.match(r"^[\w" + constants.catalog_hierarchy_sep + "]+$", name)


def verify_legal_catalog_name(name):
    assert is_name_legal_for_catalog(
        name
    ), f'Artifict name ("{name}") should be alphanumeric. Use "." for nesting (e.g. myfolder.my_artifact)'


def dict_diff_string(dict1, dict2, max_diff=200):
    keys_in_both = dict1.keys() & dict2.keys()
    added = {k: dict2[k] for k in dict2.keys() - dict1.keys()}
    removed = {k: dict1[k] for k in dict1.keys() - dict2.keys()}
    changed = {
        k: (dict1[k], dict2[k]) for k in keys_in_both if str(dict1[k]) != str(dict2[k])
    }
    result = []

    def format_with_value(k, value, label):
        value_str = str(value)
        return (
            f" - {k} ({label}): {value_str}"
            if len(value_str) <= max_diff
            else f" - {k} ({label})"
        )

    result.extend(format_with_value(k, added[k], "added") for k in added)
    result.extend(format_with_value(k, removed[k], "removed") for k in removed)
    result.extend(
        f" - {k} (changed): {dict1[k]!s} -> {dict2[k]!s}"
        if len(str(dict1[k])) <= max_diff and len(str(dict2[k])) <= 200
        else f" - {k} (changed)"
        for k in changed
    )

    return "\n".join(result)


class Catalogs:
    def __new__(cls):
        if not hasattr(cls, "instance"):
            cls.instance = super().__new__(cls)
            cls.instance.catalogs = []

        return cls.instance

    def __iter__(self):
        self._index = 0  # Initialize/reset the index for iteration
        return self

    def __next__(self):
        while self._index < len(self.catalogs):
            catalog = self.catalogs[self._index]
            self._index += 1
            if (
                settings.use_only_local_catalogs and not catalog.is_local
            ):  # Corrected typo from 'is_loacl' to 'is_local'
                continue
            return catalog
        raise StopIteration

    def register(self, catalog):
        assert isinstance(
            catalog, AbstractCatalog
        ), "catalog must be an instance of AbstractCatalog"
        assert hasattr(catalog, "__contains__"), "catalog must have __contains__ method"
        assert hasattr(catalog, "__getitem__"), "catalog must have __getitem__ method"
        self.catalogs = [catalog, *self.catalogs]

    def unregister(self, catalog):
        assert isinstance(
            catalog, AbstractCatalog
        ), "catalog must be an instance of Catalog"
        assert hasattr(catalog, "__contains__"), "catalog must have __contains__ method"
        assert hasattr(catalog, "__getitem__"), "catalog must have __getitem__ method"
        self.catalogs.remove(catalog)

    def reset(self):
        self.catalogs = []


def maybe_recover_artifacts_structure(obj):
    if Artifact.is_possible_identifier(obj):
        return verbosed_fetch_artifact(obj)
    if isinstance(obj, dict):
        for key, value in obj.items():
            obj[key] = maybe_recover_artifact(value)
        return obj
    if isinstance(obj, list):
        for i in range(len(obj)):
            obj[i] = maybe_recover_artifact(obj[i])
        return obj
    return obj


def get_closest_artifact_type(type):
    artifact_type_options = list(Artifact._class_register.keys())
    matches = difflib.get_close_matches(type, artifact_type_options)
    if matches:
        return matches[0]  # Return the closest match
    return None


class UnrecognizedArtifactTypeError(ValueError):
    def __init__(self, type) -> None:
        maybe_class = "".join(word.capitalize() for word in type.split("_"))
        message = f"'{type}' is not a recognized artifact 'type'. Make sure a the class defined this type (Probably called '{maybe_class}' or similar) is defined and/or imported anywhere in the code executed."
        closest_artifact_type = get_closest_artifact_type(type)
        if closest_artifact_type is not None:
            message += "\n\n" f"Did you mean '{closest_artifact_type}'?"
        super().__init__(message)


class MissingArtifactTypeError(ValueError):
    def __init__(self, dic) -> None:
        message = (
            f"Missing '__type__' parameter. Expected 'type' in artifact dict, got {dic}"
        )
        super().__init__(message)


class Artifact(Dataclass):
    _class_register = {}

    __type__: str = Field(default=None, final=True, init=False)
    __title__: str = NonPositionalField(
        default=None, required=False, also_positional=False
    )
    __description__: str = NonPositionalField(
        default=None, required=False, also_positional=False
    )
    __tags__: Dict[str, str] = NonPositionalField(
        default_factory=dict, required=False, also_positional=False
    )
    __id__: str = InternalField(default=None, required=False, also_positional=False)

    # if not None, the artifact is deprecated, and once instantiated, that msg
    # is logged as a warning
    __deprecated_msg__: str = NonPositionalField(
        default=None, required=False, also_positional=False
    )

    data_classification_policy: List[str] = NonPositionalField(
        default=None, required=False, also_positional=False
    )

    @classmethod
    def is_artifact_dict(cls, obj):
        return isinstance(obj, dict) and "__type__" in obj

    @classmethod
    def is_possible_identifier(cls, obj):
        return isinstance(obj, str) or cls.is_artifact_dict(obj)

    @classmethod
    def verify_artifact_dict(cls, d):
        if not isinstance(d, dict):
            raise ValueError(
                f"Artifact dict <{d}> must be of type 'dict', got '{type(d)}'."
            )
        if "__type__" not in d:
            raise MissingArtifactTypeError(d)
        if not cls.is_registered_type(d["__type__"]):
            raise UnrecognizedArtifactTypeError(d["__type__"])

    @classmethod
    def get_artifact_type(cls):
        return camel_to_snake_case(cls.__name__)

    @classmethod
    def register_class(cls, artifact_class):
        assert issubclass(
            artifact_class, Artifact
        ), f"Artifact class must be a subclass of Artifact, got '{artifact_class}'"
        assert is_camel_case(
            artifact_class.__name__
        ), f"Artifact class name must be legal camel case, got '{artifact_class.__name__}'"

        snake_case_key = camel_to_snake_case(artifact_class.__name__)

        if cls.is_registered_type(snake_case_key):
            assert (
                str(cls._class_register[snake_case_key]) == str(artifact_class)
            ), f"Artifact class name must be unique, '{snake_case_key}' already exists for {cls._class_register[snake_case_key]}. Cannot be overridden by {artifact_class}."

            return snake_case_key

        cls._class_register[snake_case_key] = artifact_class

        return snake_case_key

    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.register_class(cls)

    @classmethod
    def is_artifact_file(cls, path):
        if not os.path.exists(path) or not os.path.isfile(path):
            return False
        with open(path) as f:
            d = json.load(f)
        return cls.is_artifact_dict(d)

    @classmethod
    def is_registered_type(cls, type: str):
        return type in cls._class_register

    @classmethod
    def is_registered_class_name(cls, class_name: str):
        snake_case_key = camel_to_snake_case(class_name)
        return cls.is_registered_type(snake_case_key)

    @classmethod
    def is_registered_class(cls, clz: object):
        return clz in set(cls._class_register.values())

    @classmethod
    def _recursive_load(cls, obj):
        if isinstance(obj, dict):
            new_d = {}
            for key, value in obj.items():
                new_d[key] = cls._recursive_load(value)
            obj = new_d
        elif isinstance(obj, list):
            obj = [cls._recursive_load(value) for value in obj]
        else:
            pass
        if cls.is_artifact_dict(obj):
            cls.verify_artifact_dict(obj)
            artifact_class = cls._class_register[obj.pop("__type__")]
            obj = artifact_class.process_data_after_load(obj)
            return artifact_class(**obj)

        return obj

    @classmethod
    def from_dict(cls, d, overwrite_args=None):
        if overwrite_args is not None:
            d = {**d, **overwrite_args}
        cls.verify_artifact_dict(d)
        return cls._recursive_load(d)

    @classmethod
    def load(cls, path, artifact_identifier=None, overwrite_args=None):
        d = artifacts_json_cache(path)
        if "artifact_linked_to" in d and d["artifact_linked_to"] is not None:
            # d stands for an ArtifactLink
            artifact_link = ArtifactLink.from_dict(d)
            return artifact_link.load(overwrite_args)

        new_artifact = cls.from_dict(d, overwrite_args=overwrite_args)
        new_artifact.__id__ = artifact_identifier
        return new_artifact

    def get_pretty_print_name(self):
        if self.__id__ is not None:
            return self.__id__
        return self.__class__.__name__

    def prepare(self):
        if self.__deprecated_msg__:
            warnings.warn(self.__deprecated_msg__, DeprecationWarning, stacklevel=2)

    def prepare_args(self):
        pass

    def verify(self):
        pass

    @final
    def __pre_init__(self, **kwargs):
        self._init_dict = get_raw(kwargs)

    @final
    def verify_data_classification_policy(self):
        if self.data_classification_policy is not None:
            if not isinstance(self.data_classification_policy, list) or not all(
                isinstance(data_classification, str)
                for data_classification in self.data_classification_policy
            ):
                raise ValueError(
                    f"The 'data_classification_policy' of {self.get_pretty_print_name()} "
                    f"must be either None - in case when no policy applies - or a list of "
                    f"strings, for example: ['public']. However, '{self.data_classification_policy}' "
                    f"of type {type(self.data_classification_policy)} was provided instead."
                )

    @final
    def __post_init__(self):
        self.__type__ = self.register_class(self.__class__)

        for field in fields(self):
            if issubtype(
                field.type, Union[Artifact, List[Artifact], Dict[str, Artifact]]
            ):
                value = getattr(self, field.name)
                value = maybe_recover_artifacts_structure(value)
                setattr(self, field.name, value)

        self.verify_data_classification_policy()
        self.prepare_args()
        if not settings.skip_artifacts_prepare_and_verify:
            self.prepare()
            self.verify()

    def _to_raw_dict(self):
        return {
            "__type__": self.__type__,
            **self.process_data_before_dump(self._init_dict),
        }

    def __deepcopy__(self, memo):
        if id(self) in memo:
            return memo[id(self)]
        new_obj = Artifact.from_dict(self.to_dict())
        memo[id(self)] = new_obj
        return new_obj

    def process_data_before_dump(self, data):
        return data

    @classmethod
    def process_data_after_load(cls, data):
        return data

    def to_json(self):
        data = self.to_dict()
        return json_dump(data)

    def serialize(self):
        if self.__id__ is not None:
            return self.__id__
        return self.to_json()

    def save(self, path):
        original_args = Artifact.from_dict(self.to_dict()).get_repr_dict()
        current_args = self.get_repr_dict()
        diffs = dict_diff_string(original_args, current_args)
        if diffs:
            raise UnitxtError(
                f"Cannot save catalog artifacts that have changed since initialization. Detected differences in the following fields:\n{diffs}"
            )
        save_to_file(path, self.to_json())

    def verify_instance(
        self, instance: Dict[str, Any], name: Optional[str] = None
    ) -> Dict[str, Any]:
        """Checks if data classifications of an artifact and instance are compatible.

        Raises an error if an artifact's data classification policy does not include that of
        processed data. The purpose is to ensure that any sensitive data is handled in a
        proper way (for example when sending it to some external services).

        Args:
            instance (Dict[str, Any]): data which should contain its allowed data classification policies under key 'data_classification_policy'.

            name (Optional[str]): name of artifact which should be used to retrieve data classification from env. If not specified, then either ``__id__`` or ``__class__.__name__``, are used instead, respectively.

        Returns:
            Dict[str, Any]: unchanged instance.

        :Examples:

        .. code-block:: python

            instance = {"x": "some_text", "data_classification_policy": ["pii"]}

            # Will raise an error as "pii" is not included policy
            metric = Accuracy(data_classification_policy=["public"])
            metric.verify_instance(instance)

            # Will not raise an error
            template = SpanLabelingTemplate(data_classification_policy=["pii", "propriety"])
            template.verify_instance(instance)

            # Will not raise an error since the policy was specified in environment variable:
            UNITXT_DATA_CLASSIFICATION_POLICY = json.dumps({"metrics.accuracy": ["pii"]})
            metric = fetch_artifact("metrics.accuracy")
            metric.verify_instance(instance)

        """
        name = name or self.get_pretty_print_name()
        data_classification_policy = get_artifacts_data_classification(name)
        if not data_classification_policy:
            data_classification_policy = self.data_classification_policy

        if not data_classification_policy:
            return instance

        if not isoftype(instance, Dict[str, Any]):
            raise ValueError(
                f"The instance passed to inference engine is not a dictionary. Instance:\n{instance}"
            )
        instance_data_classification = instance.get("data_classification_policy")
        if not instance_data_classification:
            UnitxtWarning(
                f"The data does not provide information if it can be used by "
                f"'{name}' with the following data classification policy "
                f"'{data_classification_policy}'. This may lead to sending of undesired "
                f"data to external service. Set the 'data_classification_policy' "
                f"of the data to ensure a proper handling of sensitive information.",
                Documentation.DATA_CLASSIFICATION_POLICY,
            )
            return instance

        if not any(
            data_classification in data_classification_policy
            for data_classification in instance_data_classification
        ):
            raise UnitxtError(
                f"The instance '{instance} 'has the following data classification policy "
                f"'{instance_data_classification}', however, the artifact '{name}' "
                f"is only configured to support the data with classification "
                f"'{data_classification_policy}'. To enable this either change "
                f"the 'data_classification_policy' attribute of the artifact, "
                f"or modify the environment variable "
                f"'UNITXT_DATA_CLASSIFICATION_POLICY' accordingly.",
                Documentation.DATA_CLASSIFICATION_POLICY,
            )

        return instance

    def __repr__(self):
        if self.__id__ is not None:
            return self.__id__
        return super().__repr__()


class ArtifactLink(Artifact):
    # the artifact linked to, expressed by its catalog id
    artifact_linked_to: str = Field(default=None, required=True)

    @classmethod
    def from_dict(cls, d: dict):
        assert isinstance(d, dict), f"argument must be a dictionary, got: d = {d}."
        assert (
            "artifact_linked_to" in d and d["artifact_linked_to"] is not None
        ), f"A non-none field named 'artifact_linked_to' is expected in input argument d, but got: {d}."
        artifact_linked_to = d["artifact_linked_to"]
        # artifact_linked_to is a name of catalog entry
        assert isinstance(
            artifact_linked_to, str
        ), f"'artifact_linked_to' should be a string expressing a name of a catalog entry. Got{artifact_linked_to}."
        msg = d["__deprecated_msg__"] if "__deprecated_msg__" in d else None
        return ArtifactLink(
            artifact_linked_to=artifact_linked_to, __deprecated_msg__=msg
        )

    def load(self, overwrite_args: dict) -> Artifact:
        # identify the catalog for the artifact_linked_to
        assert (
            self.artifact_linked_to is not None
        ), "'artifact_linked_to' must be non-None in order to load it from the catalog. Currently, it is None."
        assert isinstance(
            self.artifact_linked_to, str
        ), f"'artifact_linked_to' should be a string (expressing a name of a catalog entry). Currently, its type is: {type(self.artifact_linked_to)}."
        needed_catalog = None
        catalogs = list(Catalogs())
        for catalog in catalogs:
            if self.artifact_linked_to in catalog:
                needed_catalog = catalog

        if needed_catalog is None:
            raise UnitxtArtifactNotFoundError(self.artifact_linked_to, catalogs)

        path = needed_catalog.path(self.artifact_linked_to)
        d = artifacts_json_cache(path)
        # if needed, follow, in a recursive manner, over multiple links,
        # passing through instantiating of the ArtifactLink-s on the way, triggering
        # deprecatioin warning as needed.
        if "artifact_linked_to" in d and d["artifact_linked_to"] is not None:
            # d stands for an ArtifactLink
            artifact_link = ArtifactLink.from_dict(d)
            return artifact_link.load(overwrite_args)
        new_artifact = Artifact.from_dict(d, overwrite_args=overwrite_args)
        new_artifact.__id__ = self.artifact_linked_to
        return new_artifact


def get_raw(obj):
    if isinstance(obj, Artifact):
        return obj._to_raw_dict()

    if isinstance(obj, tuple) and hasattr(obj, "_fields"):  # named tuple
        return type(obj)(*[get_raw(v) for v in obj])

    if isinstance(obj, (list, tuple)):
        return type(obj)([get_raw(v) for v in obj])

    if isinstance(obj, dict):
        return type(obj)({get_raw(k): get_raw(v) for k, v in obj.items()})

    return shallow_copy(obj)


class ArtifactList(list, Artifact):
    def prepare(self):
        for artifact in self:
            artifact.prepare()


class AbstractCatalog(Artifact):
    is_local: bool = AbstractField()

    @abstractmethod
    def __contains__(self, name: str) -> bool:
        pass

    @abstractmethod
    def __getitem__(self, name) -> Artifact:
        pass

    @abstractmethod
    def get_with_overwrite(self, name, overwrite_args) -> Artifact:
        pass


class UnitxtArtifactNotFoundError(UnitxtError):
    def __init__(self, name, catalogs):
        self.name = name
        self.catalogs = catalogs
        msg = (
            f"Artifact {self.name} does not exist, in Unitxt catalogs: {self.catalogs}."
        )
        if settings.use_only_local_catalogs:
            msg += f"\nNotice that unitxt.settings.use_only_local_catalogs is set to True, if you want to use remote catalogs set this settings or the environment variable {settings.use_only_local_catalogs_key}."
        super().__init__(msg)


def fetch_artifact(artifact_rep) -> Tuple[Artifact, Union[AbstractCatalog, None]]:
    """Loads an artifict from one of possible representations.

    (1) If artifact representation is already an Artifact object, return it.
    (2) If artifact representation is a string location of a local file, load the Artifact from the local file.
    (3) If artifact representation is a string name in the catalog, load the Artifact from the catalog.
    (4) If artifact representation is a json string, create a dictionary representation from the string and build an Artifact object from it.
    (5) Otherwise, check that the artifact representation is a dictionary and build an Artifact object from it.
    """
    if isinstance(artifact_rep, Artifact):
        if isinstance(artifact_rep, ArtifactLink):
            return fetch_artifact(artifact_rep.artifact_linked_to)
        return artifact_rep, None

    # If local file
    if isinstance(artifact_rep, str) and Artifact.is_artifact_file(artifact_rep):
        artifact_to_return = Artifact.load(artifact_rep)
        if isinstance(artifact_rep, ArtifactLink):
            artifact_to_return = fetch_artifact(artifact_to_return.artifact_linked_to)

        return artifact_to_return, None

    # if artifact is a name of a catalog entry
    if isinstance(artifact_rep, str):
        name, _ = separate_inside_and_outside_square_brackets(artifact_rep)
        if is_name_legal_for_catalog(name):
            catalog, artifact_rep, args = get_catalog_name_and_args(name=artifact_rep)
            artifact_to_return = catalog.get_with_overwrite(
                artifact_rep, overwrite_args=args
            )
            return artifact_to_return, catalog

    # If Json string, first load into dictionary
    if isinstance(artifact_rep, str):
        artifact_rep = json.loads(artifact_rep)
    # Load from dictionary (fails if not valid dictionary)
    return Artifact.from_dict(artifact_rep), None


def get_catalog_name_and_args(
    name: str, catalogs: Optional[List[AbstractCatalog]] = None
):
    name, args = separate_inside_and_outside_square_brackets(name)

    if catalogs is None:
        catalogs = list(Catalogs())

    for catalog in catalogs:
        if name in catalog:
            return catalog, name, args

    raise UnitxtArtifactNotFoundError(name, catalogs)


def verbosed_fetch_artifact(identifier):
    artifact, catalog = fetch_artifact(identifier)
    logger.debug(f"Artifact {identifier} is fetched from {catalog}")
    return artifact


def reset_artifacts_json_cache():
    artifacts_json_cache.cache_clear()


def maybe_recover_artifact(obj):
    if Artifact.is_possible_identifier(obj):
        return verbosed_fetch_artifact(obj)
    return obj


def register_all_artifacts(path):
    for loader, module_name, _is_pkg in pkgutil.walk_packages(path):
        logger.info(__name__)
        if module_name == __name__:
            continue
        logger.info(f"Loading {module_name}")
        # Import the module
        module = loader.find_module(module_name).load_module(module_name)

        # Iterate over every object in the module
        for _name, obj in inspect.getmembers(module):
            # Make sure the object is a class
            if inspect.isclass(obj):
                # Make sure the class is a subclass of Artifact (but not Artifact itself)
                if issubclass(obj, Artifact) and obj is not Artifact:
                    logger.info(obj)


def get_artifacts_data_classification(artifact: str) -> Optional[List[str]]:
    """Loads given artifact's data classification policy from an environment variable.

    Args:
        artifact (str): Name of the artifact which the data classification policy
            should be retrieved for. For example "metrics.accuracy".

    Returns:
        Optional[List[str]] - Data classification policies for the specified artifact
            if they were found, or None otherwise.
    """
    data_classification = settings.data_classification_policy
    if data_classification is None:
        return None

    error_msg = (
        f"If specified, the value of 'UNITXT_DATA_CLASSIFICATION_POLICY' "
        f"should be a valid json dictionary. Got '{data_classification}' "
        f"instead."
    )

    try:
        data_classification = json.loads(data_classification)
    except json.decoder.JSONDecodeError as e:
        raise RuntimeError(error_msg) from e

    if not isinstance(data_classification, dict):
        raise RuntimeError(error_msg)

    for artifact_name, artifact_data_classifications in data_classification.items():
        if (
            not isinstance(artifact_name, str)
            or not isinstance(artifact_data_classifications, list)
            or not all(
                isinstance(artifact_data_classification, str)
                for artifact_data_classification in artifact_data_classifications
            )
        ):
            raise UnitxtError(
                "'UNITXT_DATA_CLASSIFICATION_POLICY' should be of type "
                "'Dict[str, List[str]]', where a artifact's name is a key, and a "
                "value is a list of data classifications used by that artifact.",
                Documentation.DATA_CLASSIFICATION_POLICY,
            )

    if artifact not in data_classification.keys():
        return None

    return data_classification.get(artifact)