File size: 20,868 Bytes
9d5b4c0 c6e9c8c fe70438 d443ad5 c6e9c8c 9d5b4c0 8320ba9 fe70438 1e05e68 2c69fb8 7cdc7d0 c6e9c8c fe70438 7cdc7d0 fe70438 9d5b4c0 2c69fb8 cd9d84b d08fbc6 7cdc7d0 d443ad5 fe70438 c6e9c8c d08fbc6 fe70438 1e05e68 c6e9c8c eee0bf8 9d5b4c0 d08fbc6 7cdc7d0 cd9d84b fe70438 7cdc7d0 9d5b4c0 8320ba9 c6e9c8c d08fbc6 eee0bf8 5bbb99c eee0bf8 5bbb99c c6e9c8c 9d5b4c0 cd9d84b c6e9c8c fe70438 eee0bf8 c6e9c8c fe70438 1e05e68 9d5b4c0 5bbb99c d08fbc6 9d5b4c0 5bbb99c a024d9a 5bbb99c 9d5b4c0 5bbb99c 9d5b4c0 eee0bf8 1e05e68 eee0bf8 1e05e68 eee0bf8 1e05e68 eee0bf8 1e05e68 5bbb99c f6ebc4f 5bbb99c 9245edf 9d5b4c0 fe70438 9d5b4c0 7cdc7d0 67f4e71 2c69fb8 67f4e71 2c69fb8 67f4e71 2c69fb8 67f4e71 9d5b4c0 f6ebc4f 9d5b4c0 f6ebc4f 2c69fb8 d08fbc6 0a1b314 d08fbc6 0a1b314 d08fbc6 0a1b314 9d5b4c0 2c69fb8 0a1b314 2c69fb8 c6e9c8c 2c69fb8 b462f85 9d5b4c0 2c69fb8 b462f85 2c69fb8 b462f85 2c69fb8 fe70438 2c69fb8 d08fbc6 2c69fb8 9d5b4c0 fe70438 2c69fb8 9d5b4c0 2c69fb8 cc5f321 2c69fb8 d08fbc6 2c69fb8 fe70438 d08fbc6 fe70438 d08fbc6 59be457 d08fbc6 2c69fb8 d08fbc6 2c69fb8 d08fbc6 2c69fb8 058c80a a024d9a 9d5b4c0 a024d9a 2c69fb8 eee0bf8 d08fbc6 c6e9c8c d08fbc6 c6e9c8c d443ad5 fe70438 eee0bf8 9d5b4c0 2c69fb8 eee0bf8 c6e9c8c cd9d84b c6e9c8c a350a45 9d5b4c0 1e05e68 c6e9c8c 67f4e71 5bbb99c 9d5b4c0 1e05e68 9d5b4c0 1e05e68 9d5b4c0 eee0bf8 9d5b4c0 c6e9c8c 9d5b4c0 c6e9c8c 9d5b4c0 fe70438 d08fbc6 7cdc7d0 d08fbc6 e6be0c8 5bbb99c e6be0c8 eee0bf8 fe70438 e6be0c8 eee0bf8 cd9d84b eee0bf8 cd9d84b eee0bf8 e6be0c8 5bbb99c 1e05e68 eee0bf8 5bbb99c cd9d84b eee0bf8 1e05e68 8320ba9 d08fbc6 5bbb99c cd9d84b f6ebc4f 5bbb99c eee0bf8 d443ad5 5bbb99c d443ad5 5bbb99c cd9d84b 5bbb99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
from typing import List, Optional, Union
from .artifact import fetch_artifact
from .augmentors import Augmentor, NullAugmentor
from .card import TaskCard
from .collections_operators import GetLength
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
from .error_utils import UnitxtError
from .formats import Format, SystemFormat
from .logging_utils import get_logger
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
from .operators import Set, StreamRefiner
from .recipe import Recipe
from .schema import FinalizeDataset
from .serializers import SingleTypeSerializer
from .settings_utils import get_constants, get_settings
from .splitters import ConstantSizeSample, RandomSizeSample, Sampler, SeparateSplit
from .stream import MultiStream
from .system_prompts import EmptySystemPrompt, SystemPrompt
from .task import Task
from .templates import ApplyRandomTemplate, ApplySingleTemplate, Template, TemplatesList
from .type_utils import isoftype
from .utils import LRUCache
constants = get_constants()
settings = get_settings()
logger = get_logger()
# Used to give meaningful name to recipe steps
class CreateDemosPool(SeparateSplit):
pass
class BaseRecipe(Recipe, SourceSequentialOperator):
# Base parameters
card: TaskCard = None
task: Task = None
template: Union[Template, List[Template], TemplatesList] = None
system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
format: Format = None
serializer: Union[SingleTypeSerializer, List[SingleTypeSerializer]] = None
# Additional parameters
template_card_index: int = NonPositionalField(default=None)
metrics: List[str] = NonPositionalField(default=None)
postprocessors: List[str] = NonPositionalField(default=None)
group_by: List[Union[str, List[str]]] = []
loader_limit: int = None
max_train_instances: int = None
max_validation_instances: int = None
max_test_instances: int = None
train_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
validation_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
demos_pool_size: int = None
num_demos: Optional[Union[int, List[int]]] = 0
demos_removed_from_data: bool = True
demos_pool_name: str = "demos_pool"
demos_taken_from: str = "train"
demos_field: str = "demos"
sampler: Sampler = None
augmentor: Union[Augmentor, List[Augmentor]] = OptionalField(default=None)
steps: List[StreamingOperator] = InternalField(default_factory=list)
# shared class cache
_demos_pool_cache = LRUCache(max_size=10)
def before_process_multi_stream(self):
super().before_process_multi_stream()
@property
def max_demos_size(self):
if isinstance(self.num_demos, list):
return max(self.num_demos)
return self.num_demos
def verify(self):
super().verify()
if self.task is None and self.card is None:
raise ValueError("Set card or task in the recipe")
if self.card is None and (
self.num_demos > 0 or self.demos_pool_size is not None
):
raise ValueError(
"To use num_demos and demos_pool_size in recipe set a card."
)
if self.use_demos:
if self.demos_pool_size is None or self.demos_pool_size < 1:
raise ValueError(
"When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
)
if self.demos_pool_size < self.max_demos_size:
raise ValueError(
f"num_demos (got: {self.max_demos_size}) should not exceed demos_pool_size (got: {self.demos_pool_size})"
)
if self.loader_limit and self.demos_pool_size > self.loader_limit:
raise ValueError(
f"demos_pool_size should not exceed loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
)
if self.loader_limit:
if self.max_test_instances and self.max_test_instances > self.loader_limit:
raise ValueError(
f"max_test_instances should not exceed loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
)
if (
self.max_validation_instances
and self.max_validation_instances > self.loader_limit
):
raise ValueError(
f"max_validation_instances should not exceed loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
)
if (
self.max_train_instances
and self.max_train_instances > self.loader_limit
):
raise ValueError(
f"max_train_instances should not exceed loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
)
if self.metrics is not None and not isinstance(self.metrics, List):
raise ValueError(
f"metrics must be a list of metrics. Got metrics = {self.metrics}"
)
if self.postprocessors is not None and not isinstance(
self.postprocessors, List
):
raise ValueError(
f"post processors must be a list of post processor. Got postprocessors = {self.postprocessors}"
)
if self.format is not None and not isinstance(self.format, Format):
raise ValueError(
f"format parameter must be a list of of class derived from Format. Got format = {self.format}"
)
if self.template is None:
raise ValueError(
"You must set in the recipe either `template`, `template_card_index`."
)
if isinstance(self.template, list):
for template in self.template:
self.verify_template(template)
else:
self.verify_template(self.template)
if self.serializer is not None:
if not isinstance(self.serializer, list):
self.serializer = [self.serializer]
self.template.serializer.add_serializers(self.serializer)
def prepare_refiners(self):
self.train_refiner.max_instances = self.max_train_instances
self.train_refiner.apply_to_streams = ["train"]
self.processing.steps.append(self.train_refiner)
self.validation_refiner.max_instances = self.max_validation_instances
self.validation_refiner.apply_to_streams = ["validation"]
self.processing.steps.append(self.validation_refiner)
self.test_refiner.max_instances = self.max_test_instances
self.test_refiner.apply_to_streams = ["test"]
self.processing.steps.append(self.test_refiner)
def verify_template(self, template):
if not isinstance(template, Template):
raise ValueError(
f"template argument must be an object of type Template. Got template = {template}"
)
def set_pipelines(self):
self.loading = SequentialOperator(
__description__="Loading the data from the data source."
)
self.metadata = SequentialOperator(
__description__="Adding metadata (e.g. format, system prompt, template) "
)
self.standardization = SequentialOperator(
__description__="Standardizing the raw dataset fields to task field definition."
)
self.processing = SequentialOperator(
__description__="Setting task fields (and selecting demos per sample if needed)."
)
self.verbalization = SequentialOperator()
self.verbalization.__description__ = "Verbalizing the input to the model and gold references to the 'source', 'target' and 'references' fields."
self.finalize = SequentialOperator()
self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."
self.steps = [
self.loading,
self.metadata,
self.standardization,
self.processing,
self.metadata,
self.verbalization,
self.finalize,
]
self.inference_instance = SequentialOperator()
self.inference_instance.steps = [
self.metadata,
self.processing,
self.metadata,
]
self.inference_demos = SourceSequentialOperator()
self.inference_demos.steps = [
self.loading,
self.metadata,
self.standardization,
self.processing,
self.metadata,
]
self.inference = SequentialOperator()
self.inference.steps = [self.metadata, self.verbalization, self.finalize]
def production_preprocess(self, task_instances):
ms = MultiStream.from_iterables({constants.inference_stream: task_instances})
return list(self.inference_instance(ms)[constants.inference_stream])
def production_demos_pool(self):
if self.use_demos:
demos_pool = self.__class__._demos_pool_cache.get(str(self), None)
if demos_pool is None:
demos_pool = list(self.inference_demos()[self.demos_pool_name])
self.__class__._demos_pool_cache[str(self)] = demos_pool
return demos_pool
return []
@property
def has_custom_demos_pool(self):
return self.demos_pool_size is not None and self.demos_pool_size > 0
@property
def use_demos(self):
return self.num_demos is not None and self.max_demos_size > 0
def produce(self, task_instances):
"""Use the recipe in production to produce model ready query from standard task instance."""
self.before_process_multi_stream()
streams = {
constants.inference_stream: self.production_preprocess(task_instances),
}
if self.use_demos:
streams[self.demos_pool_name] = self.production_demos_pool()
multi_stream = MultiStream.from_iterables(streams)
multi_stream = self.inference(multi_stream)
return list(multi_stream[constants.inference_stream])
def reset(self):
self.reset_pipeline()
def reset_pipeline(self):
if self.format is None:
if settings.default_format is not None:
self.format, _ = fetch_artifact(settings.default_format)
else:
self.format = SystemFormat()
if self.card and self.card.preprocess_steps is None:
self.card.preprocess_steps = []
if self.task is None:
self.task = self.card.task
self.set_pipelines()
if self.card is not None:
loader = self.card.loader
if self.loader_limit:
loader.loader_limit = self.loader_limit
logger.info(f"Loader line limit was set to {self.loader_limit}")
self.loading.steps.append(loader)
# This is required in case loader_limit is not enforced by the loader
if self.loader_limit:
self.loading.steps.append(
StreamRefiner(max_instances=self.loader_limit)
)
self.metadata.steps.append(
Set(
fields={
"recipe_metadata/system_prompt": self.system_prompt,
"recipe_metadata/format": self.format,
}
)
)
if self.card:
self.standardization.steps.extend(self.card.preprocess_steps)
self.processing.steps.append(self.task)
if self.augmentor is not None and not isoftype(self.augmentor, NullAugmentor):
if (
self.card.task.augmentable_inputs is None
or len(self.task.augmentable_inputs) == 0
):
raise UnitxtError(
f"You specified augmentor in the recipe but the got task without augmentable_inputs: {self.task}"
)
if not isinstance(self.augmentor, list):
self.augmentor = [self.augmentor]
for augmentor in self.augmentor:
augmentor.set_fields(self.card.task.augmentable_inputs)
self.processing.steps.append(augmentor)
if self.has_custom_demos_pool:
self.processing.steps.append(
CreateDemosPool(
from_split=self.demos_taken_from,
to_split_names=[self.demos_pool_name, self.demos_taken_from],
to_split_sizes=[int(self.demos_pool_size)],
remove_targets_from_source_split=self.demos_removed_from_data,
)
)
if self.use_demos:
if self.sampler is None:
if self.card.sampler is None:
raise ValueError(
"Unexpected None value for card.sampler. "
"To use num_demos > 0, please set a sampler on the TaskCard."
)
self.sampler = self.card.sampler
self.prepare_refiners()
if self.use_demos:
if isinstance(self.num_demos, int):
self.verbalization.steps.append(
ConstantSizeSample(
from_stream=self.demos_pool_name,
to_field=self.demos_field,
sampler=self.sampler,
sample_size=self.num_demos,
)
)
self.verbalization.steps.append(
Set(fields={"recipe_metadata/num_demos": self.num_demos})
)
elif isinstance(self.num_demos, list):
self.verbalization.steps.append(
RandomSizeSample(
from_stream=self.demos_pool_name,
to_field=self.demos_field,
sampler=self.sampler,
sample_sizes=self.num_demos,
)
)
self.verbalization.steps.append(
GetLength(field="demos", to_field="recipe_metadata/num_demos")
)
else:
raise ValueError("num_demos must be int or List[int]")
if isinstance(self.template, list):
self.verbalization.steps.append(
ApplyRandomTemplate(
templates=self.template, demos_field=self.demos_field
)
)
else:
self.verbalization.steps.append(
ApplySingleTemplate(
template=self.template, demos_field=self.demos_field
)
)
else:
self.verbalization.steps.append(
Set(fields={"recipe_metadata/num_demos": 0})
)
if isinstance(self.template, list):
self.verbalization.steps.append(
ApplyRandomTemplate(templates=self.template)
)
else:
self.verbalization.steps.append(
ApplySingleTemplate(template=self.template)
)
self.verbalization.steps.append(self.system_prompt)
self.verbalization.steps.append(self.format)
if self.postprocessors is not None:
self.finalize.steps.append(
Set(fields={"postprocessors": self.postprocessors})
)
if self.metrics is not None:
self.finalize.steps.append(Set(fields={"metrics": self.metrics}))
self.finalize.steps.append(FinalizeDataset(group_by=self.group_by))
def prepare(self):
if isinstance(self.template, TemplatesList):
self.template = self.template.items
self.reset_pipeline()
class StandardRecipeWithIndexes(BaseRecipe):
template_card_index: int = None
def prepare(self):
assert (
self.template_card_index is None or self.template is None
), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
if self.template_card_index is None and self.template is None:
if self.card is not None:
self.template_card_index = (
0
if isinstance(self.card.templates, list)
else next(iter(self.card.templates.keys()))
)
logger.warning(
"Template was not specified in recipe, using the first template from the card by default."
)
else:
raise ValueError(
"Specify a template or template_card_index, or a card to get a default template from."
)
if self.template_card_index is not None:
try:
self.template = self.card.templates[self.template_card_index]
except Exception as e:
if isinstance(self.card.templates, dict):
options = list(self.card.templates.keys())
else:
options = list(range(0, len(self.card.templates)))
raise ValueError(
f"card_template_index '{self.template_card_index}' is not defined in card. Possible card_template_index options: {options}"
) from e
super().prepare()
class StandardRecipe(StandardRecipeWithIndexes):
"""This class represents a standard recipe for data processing and preparation.
This class can be used to prepare a recipe.
with all necessary steps, refiners and renderers included. It allows to set various
parameters and steps in a sequential manner for preparing the recipe.
Attributes:
card (TaskCard): TaskCard object associated with the recipe.
template (Template, optional): Template object to be used for the recipe.
system_prompt (SystemPrompt, optional): SystemPrompt object to be used for the recipe.
loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
format (SystemFormat, optional): SystemFormat object to be used for the recipe.
metrics (List[str]): list of catalog metrics to use with this recipe.
postprocessors (List[str]): list of catalog processors to apply at post processing. (Not recommended to use from here)
group_by (List[Union[str, List[str]]]): list of task_data or metadata keys to group global scores by.
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
max_train_instances (int, optional): Maximum training instances for the refiner.
validation_refiner (StreamRefiner, optional): Validation refiner to be used in the recipe.
max_validation_instances (int, optional): Maximum validation instances for the refiner.
test_refiner (StreamRefiner, optional): Test refiner to be used in the recipe.
max_test_instances (int, optional): Maximum test instances for the refiner.
demos_pool_size (int, optional): Size of the demos pool.
num_demos (int, optional): Number of demos to be used.
demos_pool_name (str, optional): Name of the demos pool. Default is "demos_pool".
demos_taken_from (str, optional): Specifies from where the demos are taken. Default is "train".
demos_field (str, optional): Field name for demos. Default is "demos".
demos_removed_from_data (bool, optional): whether to remove the demos from the source data, Default is True
sampler (Sampler, optional): The Sampler used to select the demonstrations when num_demos > 0.
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
instruction_card_index (int, optional): Index of instruction card to be used for preparing the recipe.
template_card_index (int, optional): Index of template card to be used for preparing the recipe.
Methods:
prepare(): This overridden method is used for preparing the recipe
by arranging all the steps, refiners, and renderers in a sequential manner.
Raises:
AssertionError: If both template and template_card_index are specified at the same time.
"""
pass
|