File size: 3,751 Bytes
152c60b
 
3129d49
 
4314c58
3e28aad
 
 
 
 
50db311
75cf782
a350a45
a387724
50db311
 
0c55b4f
785b9b9
3e28aad
0c578b5
3129d49
3e28aad
a350a45
36e41c0
4314c58
3e28aad
4314c58
3129d49
a350a45
d9c13ca
3e28aad
a387724
3e28aad
 
 
 
be4a716
3e28aad
0c55b4f
3e28aad
 
 
a350a45
be4a716
 
3e28aad
3129d49
0c578b5
3e28aad
3128771
be4a716
 
3e28aad
 
 
64458da
a350a45
be4a716
3129d49
a64dc20
b5afa71
3e28aad
d9c13ca
be4a716
d9c13ca
152c60b
e4e068f
3e28aad
 
be4a716
3e28aad
 
 
 
be4a716
36e41c0
be4a716
a350a45
 
152c60b
d9c13ca
152c60b
 
d9c13ca
152c60b
 
 
 
3e28aad
 
 
 
 
 
1083665
 
 
 
3e28aad
 
 
1083665
0c55b4f
1083665
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os

import datasets

from .api import __file__ as _
from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .collections_operators import __file__ as _
from .dataclass import __file__ as _
from .dataset_utils import __file__ as _
from .dataset_utils import get_dataset_artifact
from .deprecation_utils import __file__ as _
from .dialog_operators import __file__ as _
from .dict_utils import __file__ as _
from .eval_utils import __file__ as _
from .file_utils import __file__ as _
from .formats import __file__ as _
from .fusion import __file__ as _
from .generator_utils import __file__ as _
from .hf_utils import __file__ as _
from .hf_utils import verify_versions_compatibility
from .inference import __file__ as _
from .instructions import __file__ as _
from .llm_as_judge import __file__ as _
from .loaders import __file__ as _
from .logging_utils import __file__ as _
from .logging_utils import get_logger
from .metric import __file__ as _
from .metric_utils import __file__ as _
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .parsing_utils import __file__ as _
from .processors import __file__ as _
from .random_utils import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .schema import __file__ as _
from .settings_utils import __file__ as _
from .settings_utils import get_constants
from .span_lableing_operators import __file__ as _
from .split_utils import __file__ as _
from .splitters import __file__ as _
from .standard import __file__ as _
from .stream import __file__ as _
from .string_operators import __file__ as _
from .struct_data_operators import __file__ as _
from .system_prompts import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .type_utils import __file__ as _
from .utils import __file__ as _
from .utils import is_package_installed
from .validate import __file__ as _
from .version import __file__ as _
from .version import version

logger = get_logger()
constants = get_constants()


class Dataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = constants.version

    @property
    def generators(self):
        if not hasattr(self, "_generators") or self._generators is None:
            if is_package_installed("unitxt"):
                verify_versions_compatibility("dataset", self.VERSION)

                from unitxt.dataset_utils import \
                    get_dataset_artifact as get_dataset_artifact_installed

                logger.info("Loading with installed unitxt library...")
                dataset = get_dataset_artifact_installed(self.config.name)
            else:
                logger.info("Loading with huggingface unitxt copy...")
                dataset = get_dataset_artifact(self.config.name)

            self._generators = dataset()

        return self._generators

    def _info(self):
        return datasets.DatasetInfo()

    def _split_generators(self, _):
        return [
            datasets.SplitGenerator(name=name, gen_kwargs={"split_name": name})
            for name in self.generators.keys()
        ]

    def _generate_examples(self, split_name):
        generator = self.generators[split_name]
        yield from enumerate(generator)

    def _download_and_prepare(
        self, dl_manager, verification_mode, **prepare_splits_kwargs
    ):
        return super()._download_and_prepare(
            dl_manager, "no_checks", **prepare_splits_kwargs
        )