File size: 2,941 Bytes
b0744ce
 
 
 
fe80c45
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe80c45
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8582056
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317a57f
 
 
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
import torch
from omegaconf import OmegaConf
from transformers import pipeline
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32


def load_pipe(model_id: str):
    return pipeline(
        "automatic-speech-recognition",
        model=model_id,
        max_new_tokens=128,
        chunk_length_s=30,
        batch_size=8,
        torch_dtype=torch_dtype,
        device=device,
    )

OmegaConf.register_new_resolver("load_pipe", load_pipe)

models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))

@spaces.GPU
def automatic_speech_recognition(model_id: str, dialect_id: str, audio_file: str):
    model = models_config[model_id]["model"]
    generate_kwargs = {
        "task": "transcribe",
        "language": "id",
        "num_beams": 1,
        "prompt_ids": torch.from_numpy(model.tokenizer.get_prompt_ids(dialect_id)).to(
            device
        ),
    }
    return model(audio_file, generate_kwargs=generate_kwargs)["text"].replace(f" {dialect_id}", "")


def when_model_selected(model_id: str):
    model_config = models_config[model_id]

    dialect_drop_down_choices = [
        (k, v) for k, v in model_config["dialect_mapping"].items()
    ]

    return gr.update(
        choices=dialect_drop_down_choices,
        value=dialect_drop_down_choices[0][1],
    )


demo = gr.Blocks(
    title="臺灣南島語語音辨識系統",
    css="@import url(https://tauhu.tw/tauhu-oo.css);",
    theme=gr.themes.Default(
        font=(
            "tauhu-oo",
            gr.themes.GoogleFont("Source Sans Pro"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        )
    ),
)

with demo:
    default_model_id = list(models_config.keys())[0]
    model_drop_down = gr.Dropdown(
        models_config.keys(),
        value=default_model_id,
        label="模型",
    )

    dialect_drop_down = gr.Radio(
        choices=[
            (k, v)
            for k, v in models_config[default_model_id]["dialect_mapping"].items()
        ],
        value=list(models_config[default_model_id]["dialect_mapping"].values())[0],
        label="族別",
    )

    model_drop_down.input(
        when_model_selected,
        inputs=[model_drop_down],
        outputs=[dialect_drop_down],
    )

    with open("DEMO.md") as tong:
        gr.Markdown(tong.read())

    gr.Interface(
        automatic_speech_recognition,
        inputs=[
            model_drop_down,
            dialect_drop_down,
            gr.Audio(
                label="上傳或錄音",
                type="filepath",
                waveform_options=gr.WaveformOptions(
                    sample_rate=16000,
                ),
            ),
        ],
        outputs=[
            gr.Text(interactive=False, label="辨識結果"),
        ],
        allow_flagging="auto",
    )

demo.launch()