David Victor
init
bc3753a
import math
import torch
import numpy as np
import dearpygui.dearpygui as dpg
from scipy.spatial.transform import Rotation as R
from .utils import *
from .asr import ASR
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=60):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = fovy # in degree
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_matrix([[0, -1, 0], [0, 0, -1], [1, 0, 0]]) # init camera matrix: [[1, 0, 0], [0, -1, 0], [0, 0, 1]] (to suit ngp convention)
self.up = np.array([1, 0, 0], dtype=np.float32) # need to be normalized!
# pose
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] -= self.radius
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
def update_pose(self, pose):
# pose: [4, 4] numpy array
# assert self.center is 0
self.radius = np.linalg.norm(pose[:3, 3])
T = np.eye(4)
T[2, 3] = -self.radius
rot = pose @ np.linalg.inv(T)
self.rot = R.from_matrix(rot[:3, :3])
def update_intrinsics(self, intrinsics):
fl_x, fl_y, cx, cy = intrinsics
self.W = int(cx * 2)
self.H = int(cy * 2)
self.fovy = np.rad2deg(2 * np.arctan2(self.H, 2 * fl_y))
# intrinsics
@property
def intrinsics(self):
focal = self.H / (2 * np.tan(np.deg2rad(self.fovy) / 2))
return np.array([focal, focal, self.W // 2, self.H // 2])
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0] # why this is side --> ? # already normalized.
rotvec_x = self.up * np.radians(-0.01 * dx)
rotvec_y = side * np.radians(-0.01 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.0001 * self.rot.as_matrix()[:3, :3] @ np.array([dx, dy, dz])
class NeRFGUI:
def __init__(self, opt, trainer, data_loader, debug=True):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.debug = debug
self.training = False
self.step = 0 # training step
self.trainer = trainer
self.data_loader = data_loader
# override with dataloader's intrinsics
self.W = data_loader._data.W
self.H = data_loader._data.H
self.cam.update_intrinsics(data_loader._data.intrinsics)
# use dataloader's pose
pose_init = data_loader._data.poses[0]
self.cam.update_pose(pose_init.detach().cpu().numpy())
# use dataloader's bg
bg_img = data_loader._data.bg_img #.view(1, -1, 3)
if self.H != bg_img.shape[0] or self.W != bg_img.shape[1]:
bg_img = F.interpolate(bg_img.permute(2, 0, 1).unsqueeze(0).contiguous(), (self.H, self.W), mode='bilinear').squeeze(0).permute(1, 2, 0).contiguous()
self.bg_color = bg_img.view(1, -1, 3)
# audio features (from dataloader, only used in non-playing mode)
self.audio_features = data_loader._data.auds # [N, 29, 16]
self.audio_idx = 0
# control eye
self.eye_area = None if not self.opt.exp_eye else data_loader._data.eye_area.mean().item()
# playing seq from dataloader, or pause.
self.playing = False
self.loader = iter(data_loader)
self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # camera moved, should reset accumulation
self.spp = 1 # sample per pixel
self.mode = 'image' # choose from ['image', 'depth']
self.dynamic_resolution = False # assert False!
self.downscale = 1
self.train_steps = 16
self.ind_index = 0
self.ind_num = trainer.model.individual_codes.shape[0]
# build asr
if self.opt.asr:
self.asr = ASR(opt)
dpg.create_context()
self.register_dpg()
self.test_step()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.opt.asr:
self.asr.stop()
dpg.destroy_context()
def train_step(self):
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
outputs = self.trainer.train_gui(self.data_loader, step=self.train_steps)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.step += self.train_steps
self.need_update = True
dpg.set_value("_log_train_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_train_log", f'step = {self.step: 5d} (+{self.train_steps: 2d}), loss = {outputs["loss"]:.4f}, lr = {outputs["lr"]:.5f}')
# dynamic train steps
# max allowed train time per-frame is 500 ms
full_t = t / self.train_steps * 16
train_steps = min(16, max(4, int(16 * 500 / full_t)))
if train_steps > self.train_steps * 1.2 or train_steps < self.train_steps * 0.8:
self.train_steps = train_steps
def prepare_buffer(self, outputs):
if self.mode == 'image':
return outputs['image']
else:
return np.expand_dims(outputs['depth'], -1).repeat(3, -1)
def test_step(self):
if self.need_update or self.spp < self.opt.max_spp:
starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
starter.record()
if self.playing:
try:
data = next(self.loader)
except StopIteration:
self.loader = iter(self.data_loader)
data = next(self.loader)
if self.opt.asr:
# use the live audio stream
data['auds'] = self.asr.get_next_feat()
outputs = self.trainer.test_gui_with_data(data, self.W, self.H)
# sync local camera pose
self.cam.update_pose(data['poses_matrix'][0].detach().cpu().numpy())
else:
if self.audio_features is not None:
auds = get_audio_features(self.audio_features, self.opt.att, self.audio_idx)
else:
auds = None
outputs = self.trainer.test_gui(self.cam.pose, self.cam.intrinsics, self.W, self.H, auds, self.eye_area, self.ind_index, self.bg_color, self.spp, self.downscale)
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
# update dynamic resolution
if self.dynamic_resolution:
# max allowed infer time per-frame is 200 ms
full_t = t / (self.downscale ** 2)
downscale = min(1, max(1/4, math.sqrt(200 / full_t)))
if downscale > self.downscale * 1.2 or downscale < self.downscale * 0.8:
self.downscale = downscale
if self.need_update:
self.render_buffer = self.prepare_buffer(outputs)
self.spp = 1
self.need_update = False
else:
self.render_buffer = (self.render_buffer * self.spp + self.prepare_buffer(outputs)) / (self.spp + 1)
self.spp += 1
if self.playing:
self.need_update = True
dpg.set_value("_log_infer_time", f'{t:.4f}ms ({int(1000/t)} FPS)')
dpg.set_value("_log_resolution", f'{int(self.downscale * self.W)}x{int(self.downscale * self.H)}')
dpg.set_value("_log_spp", self.spp)
dpg.set_value("_texture", self.render_buffer)
def register_dpg(self):
### register texture
with dpg.texture_registry(show=False):
dpg.add_raw_texture(self.W, self.H, self.render_buffer, format=dpg.mvFormat_Float_rgb, tag="_texture")
### register window
# the rendered image, as the primary window
with dpg.window(tag="_primary_window", width=self.W, height=self.H):
# add the texture
dpg.add_image("_texture")
# dpg.set_primary_window("_primary_window", True)
dpg.show_tool(dpg.mvTool_Metrics)
# control window
with dpg.window(label="Control", tag="_control_window", width=400, height=300):
# button theme
with dpg.theme() as theme_button:
with dpg.theme_component(dpg.mvButton):
dpg.add_theme_color(dpg.mvThemeCol_Button, (23, 3, 18))
dpg.add_theme_color(dpg.mvThemeCol_ButtonHovered, (51, 3, 47))
dpg.add_theme_color(dpg.mvThemeCol_ButtonActive, (83, 18, 83))
dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 3, 3)
# time
if not self.opt.test:
with dpg.group(horizontal=True):
dpg.add_text("Train time: ")
dpg.add_text("no data", tag="_log_train_time")
with dpg.group(horizontal=True):
dpg.add_text("Infer time: ")
dpg.add_text("no data", tag="_log_infer_time")
with dpg.group(horizontal=True):
dpg.add_text("SPP: ")
dpg.add_text("1", tag="_log_spp")
# train button
if not self.opt.test:
with dpg.collapsing_header(label="Train", default_open=True):
# train / stop
with dpg.group(horizontal=True):
dpg.add_text("Train: ")
def callback_train(sender, app_data):
if self.training:
self.training = False
dpg.configure_item("_button_train", label="start")
else:
self.training = True
dpg.configure_item("_button_train", label="stop")
dpg.add_button(label="start", tag="_button_train", callback=callback_train)
dpg.bind_item_theme("_button_train", theme_button)
def callback_reset(sender, app_data):
@torch.no_grad()
def weight_reset(m: nn.Module):
reset_parameters = getattr(m, "reset_parameters", None)
if callable(reset_parameters):
m.reset_parameters()
self.trainer.model.apply(fn=weight_reset)
self.trainer.model.reset_extra_state() # for cuda_ray density_grid and step_counter
self.need_update = True
dpg.add_button(label="reset", tag="_button_reset", callback=callback_reset)
dpg.bind_item_theme("_button_reset", theme_button)
# save ckpt
with dpg.group(horizontal=True):
dpg.add_text("Checkpoint: ")
def callback_save(sender, app_data):
self.trainer.save_checkpoint(full=True, best=False)
dpg.set_value("_log_ckpt", "saved " + os.path.basename(self.trainer.stats["checkpoints"][-1]))
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="save", tag="_button_save", callback=callback_save)
dpg.bind_item_theme("_button_save", theme_button)
dpg.add_text("", tag="_log_ckpt")
# save mesh
with dpg.group(horizontal=True):
dpg.add_text("Marching Cubes: ")
def callback_mesh(sender, app_data):
self.trainer.save_mesh(resolution=256, threshold=10)
dpg.set_value("_log_mesh", "saved " + f'{self.trainer.name}_{self.trainer.epoch}.ply')
self.trainer.epoch += 1 # use epoch to indicate different calls.
dpg.add_button(label="mesh", tag="_button_mesh", callback=callback_mesh)
dpg.bind_item_theme("_button_mesh", theme_button)
dpg.add_text("", tag="_log_mesh")
with dpg.group(horizontal=True):
dpg.add_text("", tag="_log_train_log")
# rendering options
with dpg.collapsing_header(label="Options", default_open=True):
# playing
with dpg.group(horizontal=True):
dpg.add_text("Play: ")
def callback_play(sender, app_data):
if self.playing:
self.playing = False
dpg.configure_item("_button_play", label="start")
else:
self.playing = True
dpg.configure_item("_button_play", label="stop")
if self.opt.asr:
self.asr.warm_up()
self.need_update = True
dpg.add_button(label="start", tag="_button_play", callback=callback_play)
dpg.bind_item_theme("_button_play", theme_button)
# set asr
if self.opt.asr:
# clear queue button
def callback_clear_queue(sender, app_data):
self.asr.clear_queue()
self.need_update = True
dpg.add_button(label="clear", tag="_button_clear_queue", callback=callback_clear_queue)
dpg.bind_item_theme("_button_clear_queue", theme_button)
# dynamic rendering resolution
with dpg.group(horizontal=True):
def callback_set_dynamic_resolution(sender, app_data):
if self.dynamic_resolution:
self.dynamic_resolution = False
self.downscale = 1
else:
self.dynamic_resolution = True
self.need_update = True
# Disable dynamic resolution for face.
# dpg.add_checkbox(label="dynamic resolution", default_value=self.dynamic_resolution, callback=callback_set_dynamic_resolution)
dpg.add_text(f"{self.W}x{self.H}", tag="_log_resolution")
# mode combo
def callback_change_mode(sender, app_data):
self.mode = app_data
self.need_update = True
dpg.add_combo(('image', 'depth'), label='mode', default_value=self.mode, callback=callback_change_mode)
# bg_color picker
def callback_change_bg(sender, app_data):
self.bg_color = torch.tensor(app_data[:3], dtype=torch.float32) # only need RGB in [0, 1]
self.need_update = True
dpg.add_color_edit((255, 255, 255), label="Background Color", width=200, tag="_color_editor", no_alpha=True, callback=callback_change_bg)
# audio index slider
if not self.opt.asr:
def callback_set_audio_index(sender, app_data):
self.audio_idx = app_data
self.need_update = True
dpg.add_slider_int(label="Audio", min_value=0, max_value=self.audio_features.shape[0] - 1, format="%d", default_value=self.audio_idx, callback=callback_set_audio_index)
# ind code index slider
if self.opt.ind_dim > 0:
def callback_set_individual_code(sender, app_data):
self.ind_index = app_data
self.need_update = True
dpg.add_slider_int(label="Individual", min_value=0, max_value=self.ind_num - 1, format="%d", default_value=self.ind_index, callback=callback_set_individual_code)
# eye area slider
if self.opt.exp_eye:
def callback_set_eye(sender, app_data):
self.eye_area = app_data
self.need_update = True
dpg.add_slider_float(label="eye area", min_value=0, max_value=0.5, format="%.2f percent", default_value=self.eye_area, callback=callback_set_eye)
# fov slider
def callback_set_fovy(sender, app_data):
self.cam.fovy = app_data
self.need_update = True
dpg.add_slider_int(label="FoV (vertical)", min_value=1, max_value=120, format="%d deg", default_value=self.cam.fovy, callback=callback_set_fovy)
# dt_gamma slider
def callback_set_dt_gamma(sender, app_data):
self.opt.dt_gamma = app_data
self.need_update = True
dpg.add_slider_float(label="dt_gamma", min_value=0, max_value=0.1, format="%.5f", default_value=self.opt.dt_gamma, callback=callback_set_dt_gamma)
# max_steps slider
def callback_set_max_steps(sender, app_data):
self.opt.max_steps = app_data
self.need_update = True
dpg.add_slider_int(label="max steps", min_value=1, max_value=1024, format="%d", default_value=self.opt.max_steps, callback=callback_set_max_steps)
# aabb slider
def callback_set_aabb(sender, app_data, user_data):
# user_data is the dimension for aabb (xmin, ymin, zmin, xmax, ymax, zmax)
self.trainer.model.aabb_infer[user_data] = app_data
# also change train aabb ? [better not...]
#self.trainer.model.aabb_train[user_data] = app_data
self.need_update = True
dpg.add_separator()
dpg.add_text("Axis-aligned bounding box:")
with dpg.group(horizontal=True):
dpg.add_slider_float(label="x", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=0)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=3)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="y", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=1)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=4)
with dpg.group(horizontal=True):
dpg.add_slider_float(label="z", width=150, min_value=-self.opt.bound, max_value=0, format="%.2f", default_value=-self.opt.bound, callback=callback_set_aabb, user_data=2)
dpg.add_slider_float(label="", width=150, min_value=0, max_value=self.opt.bound, format="%.2f", default_value=self.opt.bound, callback=callback_set_aabb, user_data=5)
# debug info
if self.debug:
with dpg.collapsing_header(label="Debug"):
# pose
dpg.add_separator()
dpg.add_text("Camera Pose:")
dpg.add_text(str(self.cam.pose), tag="_log_pose")
### register camera handler
def callback_camera_drag_rotate(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.orbit(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_wheel_scale(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
delta = app_data
self.cam.scale(delta)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
def callback_camera_drag_pan(sender, app_data):
if not dpg.is_item_focused("_primary_window"):
return
dx = app_data[1]
dy = app_data[2]
self.cam.pan(dx, dy)
self.need_update = True
if self.debug:
dpg.set_value("_log_pose", str(self.cam.pose))
with dpg.handler_registry():
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Left, callback=callback_camera_drag_rotate)
dpg.add_mouse_wheel_handler(callback=callback_camera_wheel_scale)
dpg.add_mouse_drag_handler(button=dpg.mvMouseButton_Middle, callback=callback_camera_drag_pan)
dpg.create_viewport(title='RAD-NeRF', width=1080, height=720, resizable=True)
### global theme
with dpg.theme() as theme_no_padding:
with dpg.theme_component(dpg.mvAll):
# set all padding to 0 to avoid scroll bar
dpg.add_theme_style(dpg.mvStyleVar_WindowPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_FramePadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.add_theme_style(dpg.mvStyleVar_CellPadding, 0, 0, category=dpg.mvThemeCat_Core)
dpg.bind_item_theme("_primary_window", theme_no_padding)
dpg.setup_dearpygui()
#dpg.show_metrics()
dpg.show_viewport()
def render(self):
while dpg.is_dearpygui_running():
# update texture every frame
if self.training:
self.train_step()
# audio stream thread...
if self.opt.asr and self.playing:
# run 2 ASR steps (audio is at 50FPS, video is at 25FPS)
for _ in range(2):
self.asr.run_step()
self.test_step()
dpg.render_dearpygui_frame()