Spaces:
Sleeping
Sleeping
inline constexpr __device__ float PI() { return 3.141592653589793f; } | |
template <typename T> | |
__host__ __device__ T div_round_up(T val, T divisor) { | |
return (val + divisor - 1) / divisor; | |
} | |
// inputs: [B, D] | |
// outputs: [B, C], C = D + D * deg * 2 | |
__global__ void kernel_freq( | |
const float * __restrict__ inputs, | |
uint32_t B, uint32_t D, uint32_t deg, uint32_t C, | |
float * outputs | |
) { | |
// parallel on per-element | |
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; | |
if (t >= B * C) return; | |
// get index | |
const uint32_t b = t / C; | |
const uint32_t c = t - b * C; // t % C; | |
// locate | |
inputs += b * D; | |
outputs += t; | |
// write self | |
if (c < D) { | |
outputs[0] = inputs[c]; | |
// write freq | |
} else { | |
const uint32_t col = c / D - 1; | |
const uint32_t d = c % D; | |
const uint32_t freq = col / 2; | |
const float phase_shift = (col % 2) * (PI() / 2); | |
outputs[0] = __sinf(scalbnf(inputs[d], freq) + phase_shift); | |
} | |
} | |
// grad: [B, C], C = D + D * deg * 2 | |
// outputs: [B, C] | |
// grad_inputs: [B, D] | |
__global__ void kernel_freq_backward( | |
const float * __restrict__ grad, | |
const float * __restrict__ outputs, | |
uint32_t B, uint32_t D, uint32_t deg, uint32_t C, | |
float * grad_inputs | |
) { | |
// parallel on per-element | |
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x; | |
if (t >= B * D) return; | |
const uint32_t b = t / D; | |
const uint32_t d = t - b * D; // t % D; | |
// locate | |
grad += b * C; | |
outputs += b * C; | |
grad_inputs += t; | |
// register | |
float result = grad[d]; | |
grad += D; | |
outputs += D; | |
for (uint32_t f = 0; f < deg; f++) { | |
result += scalbnf(1.0f, f) * (grad[d] * outputs[D + d] - grad[D + d] * outputs[d]); | |
grad += 2 * D; | |
outputs += 2 * D; | |
} | |
// write | |
grad_inputs[0] = result; | |
} | |
void freq_encode_forward(at::Tensor inputs, const uint32_t B, const uint32_t D, const uint32_t deg, const uint32_t C, at::Tensor outputs) { | |
CHECK_CUDA(inputs); | |
CHECK_CUDA(outputs); | |
CHECK_CONTIGUOUS(inputs); | |
CHECK_CONTIGUOUS(outputs); | |
CHECK_IS_FLOATING(inputs); | |
CHECK_IS_FLOATING(outputs); | |
static constexpr uint32_t N_THREADS = 128; | |
kernel_freq<<<div_round_up(B * C, N_THREADS), N_THREADS>>>(inputs.data_ptr<float>(), B, D, deg, C, outputs.data_ptr<float>()); | |
} | |
void freq_encode_backward(at::Tensor grad, at::Tensor outputs, const uint32_t B, const uint32_t D, const uint32_t deg, const uint32_t C, at::Tensor grad_inputs) { | |
CHECK_CUDA(grad); | |
CHECK_CUDA(outputs); | |
CHECK_CUDA(grad_inputs); | |
CHECK_CONTIGUOUS(grad); | |
CHECK_CONTIGUOUS(outputs); | |
CHECK_CONTIGUOUS(grad_inputs); | |
CHECK_IS_FLOATING(grad); | |
CHECK_IS_FLOATING(outputs); | |
CHECK_IS_FLOATING(grad_inputs); | |
static constexpr uint32_t N_THREADS = 128; | |
kernel_freq_backward<<<div_round_up(B * D, N_THREADS), N_THREADS>>>(grad.data_ptr<float>(), outputs.data_ptr<float>(), B, D, deg, C, grad_inputs.data_ptr<float>()); | |
} |