linly / NeRF /data_utils /wav2mel.py
David Victor
init
bc3753a
import librosa
import librosa.filters
import numpy as np
from scipy import signal
from wav2mel_hparams import hparams as hp
from librosa.core.audio import resample
import soundfile as sf
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = hp.hop_size
if hop_size is None:
assert hp.frame_shift_ms is not None
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
if hp.signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
if hp.signal_normalization:
return _normalize(S)
return S
def _stft(y):
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram
"""
pad = (fsize - fshift)
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding
"""
M = num_frames(len(x), fsize, fshift)
pad = (fsize - fshift)
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
#Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert hp.fmax <= hp.sample_rate // 2
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
fmin=hp.fmin, fmax=hp.fmax)
def _amp_to_db(x):
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, (x) * 0.05)
def _normalize(S):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
-hp.max_abs_value, hp.max_abs_value)
else:
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
if hp.symmetric_mels:
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
else:
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
def _denormalize(D):
if hp.allow_clipping_in_normalization:
if hp.symmetric_mels:
return (((np.clip(D, -hp.max_abs_value,
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
+ hp.min_level_db)
else:
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
if hp.symmetric_mels:
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
else:
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
def wav2mel(wav, sr):
wav16k = resample(wav, orig_sr=sr, target_sr=16000)
# print('wav16k', wav16k.shape, wav16k.dtype)
mel = melspectrogram(wav16k)
# print('mel', mel.shape, mel.dtype)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
# mel.dtype = np.float32
mel_chunks = []
mel_idx_multiplier = 80. / 25
mel_step_size = 8
i = start_idx = 0
while start_idx < len(mel[0]):
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size // 2 > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
elif start_idx - mel_step_size // 2 < 0:
mel_chunks.append(mel[:, :mel_step_size])
else:
mel_chunks.append(mel[:, start_idx - mel_step_size // 2 : start_idx + mel_step_size // 2])
i += 1
return mel_chunks
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--wav', type=str, default='')
parser.add_argument('--save_feats', action='store_true')
opt = parser.parse_args()
wav, sr = librosa.core.load(opt.wav)
mel_chunks = np.array(wav2mel(wav.T, sr))
print(mel_chunks.shape, mel_chunks.transpose(0,2,1).shape)
if opt.save_feats:
save_path = opt.wav.replace('.wav', '_mel.npy')
np.save(save_path, mel_chunks.transpose(0,2,1))
print(f"[INFO] saved logits to {save_path}")