Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import numpy as np | |
import os | |
from util import * | |
class Face_3DMM(nn.Module): | |
def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num): | |
super(Face_3DMM, self).__init__() | |
# id_dim = 100 | |
# exp_dim = 79 | |
# tex_dim = 100 | |
self.point_num = point_num | |
DMM_info = np.load( | |
os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True | |
).item() | |
base_id = DMM_info["b_shape"][:id_dim, :] | |
mu_id = DMM_info["mu_shape"] | |
base_exp = DMM_info["b_exp"][:exp_dim, :] | |
mu_exp = DMM_info["mu_exp"] | |
mu = mu_id + mu_exp | |
mu = mu.reshape(-1, 3) | |
for i in range(3): | |
mu[:, i] -= np.mean(mu[:, i]) | |
mu = mu.reshape(-1) | |
self.base_id = torch.as_tensor(base_id).cuda() / 100000.0 | |
self.base_exp = torch.as_tensor(base_exp).cuda() / 100000.0 | |
self.mu = torch.as_tensor(mu).cuda() / 100000.0 | |
base_tex = DMM_info["b_tex"][:tex_dim, :] | |
mu_tex = DMM_info["mu_tex"] | |
self.base_tex = torch.as_tensor(base_tex).cuda() | |
self.mu_tex = torch.as_tensor(mu_tex).cuda() | |
sig_id = DMM_info["sig_shape"][:id_dim] | |
sig_tex = DMM_info["sig_tex"][:tex_dim] | |
sig_exp = DMM_info["sig_exp"][:exp_dim] | |
self.sig_id = torch.as_tensor(sig_id).cuda() | |
self.sig_tex = torch.as_tensor(sig_tex).cuda() | |
self.sig_exp = torch.as_tensor(sig_exp).cuda() | |
keys_info = np.load( | |
os.path.join(modelpath, "keys_info.npy"), allow_pickle=True | |
).item() | |
self.keyinds = torch.as_tensor(keys_info["keyinds"]).cuda() | |
self.left_contours = torch.as_tensor(keys_info["left_contour"]).cuda() | |
self.right_contours = torch.as_tensor(keys_info["right_contour"]).cuda() | |
self.rigid_ids = torch.as_tensor(keys_info["rigid_ids"]).cuda() | |
def get_3dlandmarks(self, id_para, exp_para, euler_angle, trans, focal_length, cxy): | |
id_para = id_para * self.sig_id | |
exp_para = exp_para * self.sig_exp | |
batch_size = id_para.shape[0] | |
num_per_contour = self.left_contours.shape[1] | |
left_contours_flat = self.left_contours.reshape(-1) | |
right_contours_flat = self.right_contours.reshape(-1) | |
sel_index = torch.cat( | |
( | |
3 * left_contours_flat.unsqueeze(1), | |
3 * left_contours_flat.unsqueeze(1) + 1, | |
3 * left_contours_flat.unsqueeze(1) + 2, | |
), | |
dim=1, | |
).reshape(-1) | |
left_geometry = ( | |
torch.mm(id_para, self.base_id[:, sel_index]) | |
+ torch.mm(exp_para, self.base_exp[:, sel_index]) | |
+ self.mu[sel_index] | |
) | |
left_geometry = left_geometry.view(batch_size, -1, 3) | |
proj_x = forward_transform( | |
left_geometry, euler_angle, trans, focal_length, cxy | |
)[:, :, 0] | |
proj_x = proj_x.reshape(batch_size, 8, num_per_contour) | |
arg_min = proj_x.argmin(dim=2) | |
left_geometry = left_geometry.view(batch_size * 8, num_per_contour, 3) | |
left_3dlands = left_geometry[ | |
torch.arange(batch_size * 8), arg_min.view(-1), : | |
].view(batch_size, 8, 3) | |
sel_index = torch.cat( | |
( | |
3 * right_contours_flat.unsqueeze(1), | |
3 * right_contours_flat.unsqueeze(1) + 1, | |
3 * right_contours_flat.unsqueeze(1) + 2, | |
), | |
dim=1, | |
).reshape(-1) | |
right_geometry = ( | |
torch.mm(id_para, self.base_id[:, sel_index]) | |
+ torch.mm(exp_para, self.base_exp[:, sel_index]) | |
+ self.mu[sel_index] | |
) | |
right_geometry = right_geometry.view(batch_size, -1, 3) | |
proj_x = forward_transform( | |
right_geometry, euler_angle, trans, focal_length, cxy | |
)[:, :, 0] | |
proj_x = proj_x.reshape(batch_size, 8, num_per_contour) | |
arg_max = proj_x.argmax(dim=2) | |
right_geometry = right_geometry.view(batch_size * 8, num_per_contour, 3) | |
right_3dlands = right_geometry[ | |
torch.arange(batch_size * 8), arg_max.view(-1), : | |
].view(batch_size, 8, 3) | |
sel_index = torch.cat( | |
( | |
3 * self.keyinds.unsqueeze(1), | |
3 * self.keyinds.unsqueeze(1) + 1, | |
3 * self.keyinds.unsqueeze(1) + 2, | |
), | |
dim=1, | |
).reshape(-1) | |
geometry = ( | |
torch.mm(id_para, self.base_id[:, sel_index]) | |
+ torch.mm(exp_para, self.base_exp[:, sel_index]) | |
+ self.mu[sel_index] | |
) | |
lands_3d = geometry.view(-1, self.keyinds.shape[0], 3) | |
lands_3d[:, :8, :] = left_3dlands | |
lands_3d[:, 9:17, :] = right_3dlands | |
return lands_3d | |
def forward_geo_sub(self, id_para, exp_para, sub_index): | |
id_para = id_para * self.sig_id | |
exp_para = exp_para * self.sig_exp | |
sel_index = torch.cat( | |
( | |
3 * sub_index.unsqueeze(1), | |
3 * sub_index.unsqueeze(1) + 1, | |
3 * sub_index.unsqueeze(1) + 2, | |
), | |
dim=1, | |
).reshape(-1) | |
geometry = ( | |
torch.mm(id_para, self.base_id[:, sel_index]) | |
+ torch.mm(exp_para, self.base_exp[:, sel_index]) | |
+ self.mu[sel_index] | |
) | |
return geometry.reshape(-1, sub_index.shape[0], 3) | |
def forward_geo(self, id_para, exp_para): | |
id_para = id_para * self.sig_id | |
exp_para = exp_para * self.sig_exp | |
geometry = ( | |
torch.mm(id_para, self.base_id) | |
+ torch.mm(exp_para, self.base_exp) | |
+ self.mu | |
) | |
return geometry.reshape(-1, self.point_num, 3) | |
def forward_tex(self, tex_para): | |
tex_para = tex_para * self.sig_tex | |
texture = torch.mm(tex_para, self.base_tex) + self.mu_tex | |
return texture.reshape(-1, self.point_num, 3) | |