David Victor
init
bc3753a
import torch
import torch.nn as nn
import numpy as np
import os
from util import *
class Face_3DMM(nn.Module):
def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num):
super(Face_3DMM, self).__init__()
# id_dim = 100
# exp_dim = 79
# tex_dim = 100
self.point_num = point_num
DMM_info = np.load(
os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True
).item()
base_id = DMM_info["b_shape"][:id_dim, :]
mu_id = DMM_info["mu_shape"]
base_exp = DMM_info["b_exp"][:exp_dim, :]
mu_exp = DMM_info["mu_exp"]
mu = mu_id + mu_exp
mu = mu.reshape(-1, 3)
for i in range(3):
mu[:, i] -= np.mean(mu[:, i])
mu = mu.reshape(-1)
self.base_id = torch.as_tensor(base_id).cuda() / 100000.0
self.base_exp = torch.as_tensor(base_exp).cuda() / 100000.0
self.mu = torch.as_tensor(mu).cuda() / 100000.0
base_tex = DMM_info["b_tex"][:tex_dim, :]
mu_tex = DMM_info["mu_tex"]
self.base_tex = torch.as_tensor(base_tex).cuda()
self.mu_tex = torch.as_tensor(mu_tex).cuda()
sig_id = DMM_info["sig_shape"][:id_dim]
sig_tex = DMM_info["sig_tex"][:tex_dim]
sig_exp = DMM_info["sig_exp"][:exp_dim]
self.sig_id = torch.as_tensor(sig_id).cuda()
self.sig_tex = torch.as_tensor(sig_tex).cuda()
self.sig_exp = torch.as_tensor(sig_exp).cuda()
keys_info = np.load(
os.path.join(modelpath, "keys_info.npy"), allow_pickle=True
).item()
self.keyinds = torch.as_tensor(keys_info["keyinds"]).cuda()
self.left_contours = torch.as_tensor(keys_info["left_contour"]).cuda()
self.right_contours = torch.as_tensor(keys_info["right_contour"]).cuda()
self.rigid_ids = torch.as_tensor(keys_info["rigid_ids"]).cuda()
def get_3dlandmarks(self, id_para, exp_para, euler_angle, trans, focal_length, cxy):
id_para = id_para * self.sig_id
exp_para = exp_para * self.sig_exp
batch_size = id_para.shape[0]
num_per_contour = self.left_contours.shape[1]
left_contours_flat = self.left_contours.reshape(-1)
right_contours_flat = self.right_contours.reshape(-1)
sel_index = torch.cat(
(
3 * left_contours_flat.unsqueeze(1),
3 * left_contours_flat.unsqueeze(1) + 1,
3 * left_contours_flat.unsqueeze(1) + 2,
),
dim=1,
).reshape(-1)
left_geometry = (
torch.mm(id_para, self.base_id[:, sel_index])
+ torch.mm(exp_para, self.base_exp[:, sel_index])
+ self.mu[sel_index]
)
left_geometry = left_geometry.view(batch_size, -1, 3)
proj_x = forward_transform(
left_geometry, euler_angle, trans, focal_length, cxy
)[:, :, 0]
proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
arg_min = proj_x.argmin(dim=2)
left_geometry = left_geometry.view(batch_size * 8, num_per_contour, 3)
left_3dlands = left_geometry[
torch.arange(batch_size * 8), arg_min.view(-1), :
].view(batch_size, 8, 3)
sel_index = torch.cat(
(
3 * right_contours_flat.unsqueeze(1),
3 * right_contours_flat.unsqueeze(1) + 1,
3 * right_contours_flat.unsqueeze(1) + 2,
),
dim=1,
).reshape(-1)
right_geometry = (
torch.mm(id_para, self.base_id[:, sel_index])
+ torch.mm(exp_para, self.base_exp[:, sel_index])
+ self.mu[sel_index]
)
right_geometry = right_geometry.view(batch_size, -1, 3)
proj_x = forward_transform(
right_geometry, euler_angle, trans, focal_length, cxy
)[:, :, 0]
proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
arg_max = proj_x.argmax(dim=2)
right_geometry = right_geometry.view(batch_size * 8, num_per_contour, 3)
right_3dlands = right_geometry[
torch.arange(batch_size * 8), arg_max.view(-1), :
].view(batch_size, 8, 3)
sel_index = torch.cat(
(
3 * self.keyinds.unsqueeze(1),
3 * self.keyinds.unsqueeze(1) + 1,
3 * self.keyinds.unsqueeze(1) + 2,
),
dim=1,
).reshape(-1)
geometry = (
torch.mm(id_para, self.base_id[:, sel_index])
+ torch.mm(exp_para, self.base_exp[:, sel_index])
+ self.mu[sel_index]
)
lands_3d = geometry.view(-1, self.keyinds.shape[0], 3)
lands_3d[:, :8, :] = left_3dlands
lands_3d[:, 9:17, :] = right_3dlands
return lands_3d
def forward_geo_sub(self, id_para, exp_para, sub_index):
id_para = id_para * self.sig_id
exp_para = exp_para * self.sig_exp
sel_index = torch.cat(
(
3 * sub_index.unsqueeze(1),
3 * sub_index.unsqueeze(1) + 1,
3 * sub_index.unsqueeze(1) + 2,
),
dim=1,
).reshape(-1)
geometry = (
torch.mm(id_para, self.base_id[:, sel_index])
+ torch.mm(exp_para, self.base_exp[:, sel_index])
+ self.mu[sel_index]
)
return geometry.reshape(-1, sub_index.shape[0], 3)
def forward_geo(self, id_para, exp_para):
id_para = id_para * self.sig_id
exp_para = exp_para * self.sig_exp
geometry = (
torch.mm(id_para, self.base_id)
+ torch.mm(exp_para, self.base_exp)
+ self.mu
)
return geometry.reshape(-1, self.point_num, 3)
def forward_tex(self, tex_para):
tex_para = tex_para * self.sig_tex
texture = torch.mm(tex_para, self.base_tex) + self.mu_tex
return texture.reshape(-1, self.point_num, 3)