Spaces:
Sleeping
Sleeping
import librosa | |
import librosa.filters | |
import numpy as np | |
from scipy import signal | |
from wav2mel_hparams import hparams as hp | |
from librosa.core.audio import resample | |
import soundfile as sf | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr) | |
def preemphasis(wav, k, preemphasize=True): | |
if preemphasize: | |
return signal.lfilter([1, -k], [1], wav) | |
return wav | |
def inv_preemphasis(wav, k, inv_preemphasize=True): | |
if inv_preemphasize: | |
return signal.lfilter([1], [1, -k], wav) | |
return wav | |
def get_hop_size(): | |
hop_size = hp.hop_size | |
if hop_size is None: | |
assert hp.frame_shift_ms is not None | |
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate) | |
return hop_size | |
def linearspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(np.abs(D)) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def melspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def _stft(y): | |
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size) | |
########################################################## | |
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
def num_frames(length, fsize, fshift): | |
"""Compute number of time frames of spectrogram | |
""" | |
pad = (fsize - fshift) | |
if length % fshift == 0: | |
M = (length + pad * 2 - fsize) // fshift + 1 | |
else: | |
M = (length + pad * 2 - fsize) // fshift + 2 | |
return M | |
def pad_lr(x, fsize, fshift): | |
"""Compute left and right padding | |
""" | |
M = num_frames(len(x), fsize, fshift) | |
pad = (fsize - fshift) | |
T = len(x) + 2 * pad | |
r = (M - 1) * fshift + fsize - T | |
return pad, pad + r | |
########################################################## | |
#Librosa correct padding | |
def librosa_pad_lr(x, fsize, fshift): | |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
# Conversions | |
_mel_basis = None | |
def _linear_to_mel(spectogram): | |
global _mel_basis | |
if _mel_basis is None: | |
_mel_basis = _build_mel_basis() | |
return np.dot(_mel_basis, spectogram) | |
def _build_mel_basis(): | |
assert hp.fmax <= hp.sample_rate // 2 | |
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels, | |
fmin=hp.fmin, fmax=hp.fmax) | |
def _amp_to_db(x): | |
min_level = np.exp(hp.min_level_db / 20 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _db_to_amp(x): | |
return np.power(10.0, (x) * 0.05) | |
def _normalize(S): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value, | |
-hp.max_abs_value, hp.max_abs_value) | |
else: | |
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value) | |
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0 | |
if hp.symmetric_mels: | |
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value | |
else: | |
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) | |
def _denormalize(D): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return (((np.clip(D, -hp.max_abs_value, | |
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) | |
+ hp.min_level_db) | |
else: | |
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) | |
if hp.symmetric_mels: | |
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) | |
else: | |
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) | |
def wav2mel(wav, sr): | |
wav16k = resample(wav, orig_sr=sr, target_sr=16000) | |
# print('wav16k', wav16k.shape, wav16k.dtype) | |
mel = melspectrogram(wav16k) | |
# print('mel', mel.shape, mel.dtype) | |
if np.isnan(mel.reshape(-1)).sum() > 0: | |
raise ValueError( | |
'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') | |
# mel.dtype = np.float32 | |
mel_chunks = [] | |
mel_idx_multiplier = 80. / 25 | |
mel_step_size = 8 | |
i = start_idx = 0 | |
while start_idx < len(mel[0]): | |
start_idx = int(i * mel_idx_multiplier) | |
if start_idx + mel_step_size // 2 > len(mel[0]): | |
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) | |
elif start_idx - mel_step_size // 2 < 0: | |
mel_chunks.append(mel[:, :mel_step_size]) | |
else: | |
mel_chunks.append(mel[:, start_idx - mel_step_size // 2 : start_idx + mel_step_size // 2]) | |
i += 1 | |
return mel_chunks | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--wav', type=str, default='') | |
parser.add_argument('--save_feats', action='store_true') | |
opt = parser.parse_args() | |
wav, sr = librosa.core.load(opt.wav) | |
mel_chunks = np.array(wav2mel(wav.T, sr)) | |
print(mel_chunks.shape, mel_chunks.transpose(0,2,1).shape) | |
if opt.save_feats: | |
save_path = opt.wav.replace('.wav', '_mel.npy') | |
np.save(save_path, mel_chunks.transpose(0,2,1)) | |
print(f"[INFO] saved logits to {save_path}") |