Spaces:
Sleeping
Sleeping
from transformers import Wav2Vec2Processor, HubertModel | |
import soundfile as sf | |
import numpy as np | |
import torch | |
print("Loading the Wav2Vec2 Processor...") | |
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") | |
print("Loading the HuBERT Model...") | |
hubert_model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") | |
def get_hubert_from_16k_wav(wav_16k_name): | |
speech_16k, _ = sf.read(wav_16k_name) | |
hubert = get_hubert_from_16k_speech(speech_16k) | |
return hubert | |
def get_hubert_from_16k_speech(speech, device="cuda:0"): | |
global hubert_model | |
hubert_model = hubert_model.to(device) | |
if speech.ndim ==2: | |
speech = speech[:, 0] # [T, 2] ==> [T,] | |
input_values_all = wav2vec2_processor(speech, return_tensors="pt", sampling_rate=16000).input_values # [1, T] | |
input_values_all = input_values_all.to(device) | |
# For long audio sequence, due to the memory limitation, we cannot process them in one run | |
# HuBERT process the wav with a CNN of stride [5,2,2,2,2,2], making a stride of 320 | |
# Besides, the kernel is [10,3,3,3,3,2,2], making 400 a fundamental unit to get 1 time step. | |
# So the CNN is euqal to a big Conv1D with kernel k=400 and stride s=320 | |
# We have the equation to calculate out time step: T = floor((t-k)/s) | |
# To prevent overlap, we set each clip length of (K+S*(N-1)), where N is the expected length T of this clip | |
# The start point of next clip should roll back with a length of (kernel-stride) so it is stride * N | |
kernel = 400 | |
stride = 320 | |
clip_length = stride * 1000 | |
num_iter = input_values_all.shape[1] // clip_length | |
expected_T = (input_values_all.shape[1] - (kernel-stride)) // stride | |
res_lst = [] | |
for i in range(num_iter): | |
if i == 0: | |
start_idx = 0 | |
end_idx = clip_length - stride + kernel | |
else: | |
start_idx = clip_length * i | |
end_idx = start_idx + (clip_length - stride + kernel) | |
input_values = input_values_all[:, start_idx: end_idx] | |
hidden_states = hubert_model.forward(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024] | |
res_lst.append(hidden_states[0]) | |
if num_iter > 0: | |
input_values = input_values_all[:, clip_length * num_iter:] | |
else: | |
input_values = input_values_all | |
# if input_values.shape[1] != 0: | |
if input_values.shape[1] >= kernel: # if the last batch is shorter than kernel_size, skip it | |
hidden_states = hubert_model(input_values).last_hidden_state # [B=1, T=pts//320, hid=1024] | |
res_lst.append(hidden_states[0]) | |
ret = torch.cat(res_lst, dim=0).cpu() # [T, 1024] | |
# assert ret.shape[0] == expected_T | |
assert abs(ret.shape[0] - expected_T) <= 1 | |
if ret.shape[0] < expected_T: | |
ret = torch.nn.functional.pad(ret, (0,0,0,expected_T-ret.shape[0])) | |
else: | |
ret = ret[:expected_T] | |
return ret | |
def make_even_first_dim(tensor): | |
size = list(tensor.size()) | |
if size[0] % 2 == 1: | |
size[0] -= 1 | |
return tensor[:size[0]] | |
return tensor | |
import soundfile as sf | |
import numpy as np | |
import torch | |
from argparse import ArgumentParser | |
import librosa | |
parser = ArgumentParser() | |
parser.add_argument('--wav', type=str, help='') | |
args = parser.parse_args() | |
wav_name = args.wav | |
speech, sr = sf.read(wav_name) | |
speech_16k = librosa.resample(speech, orig_sr=sr, target_sr=16000) | |
print("SR: {} to {}".format(sr, 16000)) | |
# print(speech.shape, speech_16k.shape) | |
hubert_hidden = get_hubert_from_16k_speech(speech_16k) | |
hubert_hidden = make_even_first_dim(hubert_hidden).reshape(-1, 2, 1024) | |
np.save(wav_name.replace('.wav', '_hu.npy'), hubert_hidden.detach().numpy()) | |
print(hubert_hidden.detach().numpy().shape) |