Spaces:
Sleeping
Sleeping
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from typing import List | |
from .char_convert import tranditional_to_simplified | |
from .chronology import RE_DATE | |
from .chronology import RE_DATE2 | |
from .chronology import RE_TIME | |
from .chronology import RE_TIME_RANGE | |
from .chronology import replace_date | |
from .chronology import replace_date2 | |
from .chronology import replace_time | |
from .constants import F2H_ASCII_LETTERS | |
from .constants import F2H_DIGITS | |
from .constants import F2H_SPACE | |
from .num import RE_DECIMAL_NUM | |
from .num import RE_DEFAULT_NUM | |
from .num import RE_FRAC | |
from .num import RE_INTEGER | |
from .num import RE_NUMBER | |
from .num import RE_PERCENTAGE | |
from .num import RE_POSITIVE_QUANTIFIERS | |
from .num import RE_RANGE | |
from .num import replace_default_num | |
from .num import replace_frac | |
from .num import replace_negative_num | |
from .num import replace_number | |
from .num import replace_percentage | |
from .num import replace_positive_quantifier | |
from .num import replace_range | |
from .phonecode import RE_MOBILE_PHONE | |
from .phonecode import RE_NATIONAL_UNIFORM_NUMBER | |
from .phonecode import RE_TELEPHONE | |
from .phonecode import replace_mobile | |
from .phonecode import replace_phone | |
from .quantifier import RE_TEMPERATURE | |
from .quantifier import replace_measure | |
from .quantifier import replace_temperature | |
class TextNormalizer(): | |
def __init__(self): | |
self.SENTENCE_SPLITOR = re.compile(r'([:、,;。?!,;?!][”’]?)') | |
def _split(self, text: str, lang="zh") -> List[str]: | |
"""Split long text into sentences with sentence-splitting punctuations. | |
Args: | |
text (str): The input text. | |
Returns: | |
List[str]: Sentences. | |
""" | |
# Only for pure Chinese here | |
if lang == "zh": | |
text = text.replace(" ", "") | |
# 过滤掉特殊字符 | |
text = re.sub(r'[——《》【】<=>{}()()#&@“”^_|…\\]', '', text) | |
text = self.SENTENCE_SPLITOR.sub(r'\1\n', text) | |
text = text.strip() | |
sentences = [sentence.strip() for sentence in re.split(r'\n+', text)] | |
return sentences | |
def _post_replace(self, sentence: str) -> str: | |
sentence = sentence.replace('/', '每') | |
sentence = sentence.replace('~', '至') | |
sentence = sentence.replace('~', '至') | |
sentence = sentence.replace('①', '一') | |
sentence = sentence.replace('②', '二') | |
sentence = sentence.replace('③', '三') | |
sentence = sentence.replace('④', '四') | |
sentence = sentence.replace('⑤', '五') | |
sentence = sentence.replace('⑥', '六') | |
sentence = sentence.replace('⑦', '七') | |
sentence = sentence.replace('⑧', '八') | |
sentence = sentence.replace('⑨', '九') | |
sentence = sentence.replace('⑩', '十') | |
sentence = sentence.replace('α', '阿尔法') | |
sentence = sentence.replace('β', '贝塔') | |
sentence = sentence.replace('γ', '伽玛').replace('Γ', '伽玛') | |
sentence = sentence.replace('δ', '德尔塔').replace('Δ', '德尔塔') | |
sentence = sentence.replace('ε', '艾普西龙') | |
sentence = sentence.replace('ζ', '捷塔') | |
sentence = sentence.replace('η', '依塔') | |
sentence = sentence.replace('θ', '西塔').replace('Θ', '西塔') | |
sentence = sentence.replace('ι', '艾欧塔') | |
sentence = sentence.replace('κ', '喀帕') | |
sentence = sentence.replace('λ', '拉姆达').replace('Λ', '拉姆达') | |
sentence = sentence.replace('μ', '缪') | |
sentence = sentence.replace('ν', '拗') | |
sentence = sentence.replace('ξ', '克西').replace('Ξ', '克西') | |
sentence = sentence.replace('ο', '欧米克伦') | |
sentence = sentence.replace('π', '派').replace('Π', '派') | |
sentence = sentence.replace('ρ', '肉') | |
sentence = sentence.replace('ς', '西格玛').replace('Σ', '西格玛').replace( | |
'σ', '西格玛') | |
sentence = sentence.replace('τ', '套') | |
sentence = sentence.replace('υ', '宇普西龙') | |
sentence = sentence.replace('φ', '服艾').replace('Φ', '服艾') | |
sentence = sentence.replace('χ', '器') | |
sentence = sentence.replace('ψ', '普赛').replace('Ψ', '普赛') | |
sentence = sentence.replace('ω', '欧米伽').replace('Ω', '欧米伽') | |
# re filter special characters, have one more character "-" than line 68 | |
sentence = re.sub(r'[-——《》【】<=>{}()()#&@“”^_|…\\]', '', sentence) | |
return sentence | |
def normalize_sentence(self, sentence: str) -> str: | |
# basic character conversions | |
sentence = tranditional_to_simplified(sentence) | |
sentence = sentence.translate(F2H_ASCII_LETTERS).translate( | |
F2H_DIGITS).translate(F2H_SPACE) | |
# number related NSW verbalization | |
sentence = RE_DATE.sub(replace_date, sentence) | |
sentence = RE_DATE2.sub(replace_date2, sentence) | |
# range first | |
sentence = RE_TIME_RANGE.sub(replace_time, sentence) | |
sentence = RE_TIME.sub(replace_time, sentence) | |
sentence = RE_TEMPERATURE.sub(replace_temperature, sentence) | |
sentence = replace_measure(sentence) | |
sentence = RE_FRAC.sub(replace_frac, sentence) | |
sentence = RE_PERCENTAGE.sub(replace_percentage, sentence) | |
sentence = RE_MOBILE_PHONE.sub(replace_mobile, sentence) | |
sentence = RE_TELEPHONE.sub(replace_phone, sentence) | |
sentence = RE_NATIONAL_UNIFORM_NUMBER.sub(replace_phone, sentence) | |
sentence = RE_RANGE.sub(replace_range, sentence) | |
sentence = RE_INTEGER.sub(replace_negative_num, sentence) | |
sentence = RE_DECIMAL_NUM.sub(replace_number, sentence) | |
sentence = RE_POSITIVE_QUANTIFIERS.sub(replace_positive_quantifier, | |
sentence) | |
sentence = RE_DEFAULT_NUM.sub(replace_default_num, sentence) | |
sentence = RE_NUMBER.sub(replace_number, sentence) | |
sentence = self._post_replace(sentence) | |
return sentence | |
def normalize(self, text: str) -> List[str]: | |
sentences = self._split(text) | |
sentences = [self.normalize_sentence(sent) for sent in sentences] | |
return sentences | |