Spaces:
Sleeping
Sleeping
import os | |
import glob | |
import tqdm | |
import json | |
import argparse | |
import cv2 | |
import numpy as np | |
def extract_audio(path, out_path, sample_rate=16000): | |
print(f'[INFO] ===== extract audio from {path} to {out_path} =====') | |
cmd = f'ffmpeg -i {path} -f wav -ar {sample_rate} {out_path}' | |
os.system(cmd) | |
print(f'[INFO] ===== extracted audio =====') | |
def extract_audio_features(path, mode='wav2vec'): | |
print(f'[INFO] ===== extract audio labels for {path} =====') | |
if mode == 'wav2vec': | |
cmd = f'python nerf/asr.py --wav {path} --save_feats' | |
else: # deepspeech | |
cmd = f'python data_utils/deepspeech_features/extract_ds_features.py --input {path}' | |
os.system(cmd) | |
print(f'[INFO] ===== extracted audio labels =====') | |
def extract_images(path, out_path, fps=25): | |
print(f'[INFO] ===== extract images from {path} to {out_path} =====') | |
cmd = f'ffmpeg -i {path} -vf fps={fps} -qmin 1 -q:v 1 -start_number 0 {os.path.join(out_path, "%d.jpg")}' | |
os.system(cmd) | |
print(f'[INFO] ===== extracted images =====') | |
def extract_semantics(ori_imgs_dir, parsing_dir): | |
print(f'[INFO] ===== extract semantics from {ori_imgs_dir} to {parsing_dir} =====') | |
cmd = f'python data_utils/face_parsing/test.py --respath={parsing_dir} --imgpath={ori_imgs_dir}' | |
os.system(cmd) | |
print(f'[INFO] ===== extracted semantics =====') | |
def extract_landmarks(ori_imgs_dir): | |
print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====') | |
import face_alignment | |
try: | |
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) | |
except: | |
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) | |
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) | |
for image_path in tqdm.tqdm(image_paths): | |
input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) | |
preds = fa.get_landmarks(input) | |
if len(preds) > 0: | |
lands = preds[0].reshape(-1, 2)[:,:2] | |
np.savetxt(image_path.replace('jpg', 'lms'), lands, '%f') | |
del fa | |
print(f'[INFO] ===== extracted face landmarks =====') | |
def extract_background(base_dir, ori_imgs_dir): | |
print(f'[INFO] ===== extract background image from {ori_imgs_dir} =====') | |
from sklearn.neighbors import NearestNeighbors | |
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) | |
# only use 1/20 image_paths | |
image_paths = image_paths[::20] | |
# read one image to get H/W | |
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
h, w = tmp_image.shape[:2] | |
# nearest neighbors | |
all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose() | |
distss = [] | |
for image_path in tqdm.tqdm(image_paths): | |
parse_img = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) | |
bg = (parse_img[..., 0] == 255) & (parse_img[..., 1] == 255) & (parse_img[..., 2] == 255) | |
fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0) | |
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) | |
dists, _ = nbrs.kneighbors(all_xys) | |
distss.append(dists) | |
distss = np.stack(distss) | |
max_dist = np.max(distss, 0) | |
max_id = np.argmax(distss, 0) | |
bc_pixs = max_dist > 5 | |
bc_pixs_id = np.nonzero(bc_pixs) | |
bc_ids = max_id[bc_pixs] | |
imgs = [] | |
num_pixs = distss.shape[1] | |
for image_path in image_paths: | |
img = cv2.imread(image_path) | |
imgs.append(img) | |
imgs = np.stack(imgs).reshape(-1, num_pixs, 3) | |
bc_img = np.zeros((h*w, 3), dtype=np.uint8) | |
bc_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :] | |
bc_img = bc_img.reshape(h, w, 3) | |
max_dist = max_dist.reshape(h, w) | |
bc_pixs = max_dist > 5 | |
bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose() | |
fg_xys = np.stack(np.nonzero(bc_pixs)).transpose() | |
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys) | |
distances, indices = nbrs.kneighbors(bg_xys) | |
bg_fg_xys = fg_xys[indices[:, 0]] | |
bc_img[bg_xys[:, 0], bg_xys[:, 1], :] = bc_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :] | |
cv2.imwrite(os.path.join(base_dir, 'bc.jpg'), bc_img) | |
print(f'[INFO] ===== extracted background image =====') | |
def extract_torso_and_gt(base_dir, ori_imgs_dir): | |
print(f'[INFO] ===== extract torso and gt images for {base_dir} =====') | |
from scipy.ndimage import binary_erosion, binary_dilation | |
# load bg | |
bg_image = cv2.imread(os.path.join(base_dir, 'bc.jpg'), cv2.IMREAD_UNCHANGED) | |
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) | |
for image_path in tqdm.tqdm(image_paths): | |
# read ori image | |
ori_image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
# read semantics | |
seg = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png')) | |
head_part = (seg[..., 0] == 255) & (seg[..., 1] == 0) & (seg[..., 2] == 0) | |
neck_part = (seg[..., 0] == 0) & (seg[..., 1] == 255) & (seg[..., 2] == 0) | |
torso_part = (seg[..., 0] == 0) & (seg[..., 1] == 0) & (seg[..., 2] == 255) | |
bg_part = (seg[..., 0] == 255) & (seg[..., 1] == 255) & (seg[..., 2] == 255) | |
# get gt image | |
gt_image = ori_image.copy() | |
gt_image[bg_part] = bg_image[bg_part] | |
cv2.imwrite(image_path.replace('ori_imgs', 'gt_imgs'), gt_image) | |
# get torso image | |
torso_image = gt_image.copy() # rgb | |
torso_image[head_part] = bg_image[head_part] | |
torso_alpha = 255 * np.ones((gt_image.shape[0], gt_image.shape[1], 1), dtype=np.uint8) # alpha | |
# torso part "vertical" in-painting... | |
L = 8 + 1 | |
torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2] | |
# lexsort: sort 2D coords first by y then by x, | |
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes | |
inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1])) | |
torso_coords = torso_coords[inds] | |
# choose the top pixel for each column | |
u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True) | |
top_torso_coords = torso_coords[uid] # [m, 2] | |
# only keep top-is-head pixels | |
top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0]) | |
mask = head_part[tuple(top_torso_coords_up.T)] | |
if mask.any(): | |
top_torso_coords = top_torso_coords[mask] | |
# get the color | |
top_torso_colors = gt_image[tuple(top_torso_coords.T)] # [m, 3] | |
# construct inpaint coords (vertically up, or minus in x) | |
inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2] | |
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] | |
inpaint_torso_coords += inpaint_offsets | |
inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2] | |
inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3] | |
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] | |
inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] | |
# set color | |
torso_image[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors | |
inpaint_torso_mask = np.zeros_like(torso_image[..., 0]).astype(bool) | |
inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True | |
else: | |
inpaint_torso_mask = None | |
# neck part "vertical" in-painting... | |
push_down = 4 | |
L = 48 + push_down + 1 | |
neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3) | |
neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2] | |
# lexsort: sort 2D coords first by y then by x, | |
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes | |
inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1])) | |
neck_coords = neck_coords[inds] | |
# choose the top pixel for each column | |
u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True) | |
top_neck_coords = neck_coords[uid] # [m, 2] | |
# only keep top-is-head pixels | |
top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0]) | |
mask = head_part[tuple(top_neck_coords_up.T)] | |
top_neck_coords = top_neck_coords[mask] | |
# push these top down for 4 pixels to make the neck inpainting more natural... | |
offset_down = np.minimum(ucnt[mask] - 1, push_down) | |
top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1) | |
# get the color | |
top_neck_colors = gt_image[tuple(top_neck_coords.T)] # [m, 3] | |
# construct inpaint coords (vertically up, or minus in x) | |
inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2] | |
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2] | |
inpaint_neck_coords += inpaint_offsets | |
inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2] | |
inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3] | |
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1] | |
inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3] | |
# set color | |
torso_image[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors | |
# apply blurring to the inpaint area to avoid vertical-line artifects... | |
inpaint_mask = np.zeros_like(torso_image[..., 0]).astype(bool) | |
inpaint_mask[tuple(inpaint_neck_coords.T)] = True | |
blur_img = torso_image.copy() | |
blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT) | |
torso_image[inpaint_mask] = blur_img[inpaint_mask] | |
# set mask | |
mask = (neck_part | torso_part | inpaint_mask) | |
if inpaint_torso_mask is not None: | |
mask = mask | inpaint_torso_mask | |
torso_image[~mask] = 0 | |
torso_alpha[~mask] = 0 | |
cv2.imwrite(image_path.replace('ori_imgs', 'torso_imgs').replace('.jpg', '.png'), np.concatenate([torso_image, torso_alpha], axis=-1)) | |
print(f'[INFO] ===== extracted torso and gt images =====') | |
def face_tracking(ori_imgs_dir): | |
print(f'[INFO] ===== perform face tracking =====') | |
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) | |
# read one image to get H/W | |
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
h, w = tmp_image.shape[:2] | |
cmd = f'python data_utils/face_tracking/face_tracker.py --path={ori_imgs_dir} --img_h={h} --img_w={w} --frame_num={len(image_paths)}' | |
os.system(cmd) | |
print(f'[INFO] ===== finished face tracking =====') | |
def save_transforms(base_dir, ori_imgs_dir): | |
print(f'[INFO] ===== save transforms =====') | |
import torch | |
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg')) | |
# read one image to get H/W | |
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3] | |
h, w = tmp_image.shape[:2] | |
params_dict = torch.load(os.path.join(base_dir, 'track_params.pt')) | |
focal_len = params_dict['focal'] | |
euler_angle = params_dict['euler'] | |
trans = params_dict['trans'] / 10.0 | |
valid_num = euler_angle.shape[0] | |
def euler2rot(euler_angle): | |
batch_size = euler_angle.shape[0] | |
theta = euler_angle[:, 0].reshape(-1, 1, 1) | |
phi = euler_angle[:, 1].reshape(-1, 1, 1) | |
psi = euler_angle[:, 2].reshape(-1, 1, 1) | |
one = torch.ones((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device) | |
zero = torch.zeros((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device) | |
rot_x = torch.cat(( | |
torch.cat((one, zero, zero), 1), | |
torch.cat((zero, theta.cos(), theta.sin()), 1), | |
torch.cat((zero, -theta.sin(), theta.cos()), 1), | |
), 2) | |
rot_y = torch.cat(( | |
torch.cat((phi.cos(), zero, -phi.sin()), 1), | |
torch.cat((zero, one, zero), 1), | |
torch.cat((phi.sin(), zero, phi.cos()), 1), | |
), 2) | |
rot_z = torch.cat(( | |
torch.cat((psi.cos(), -psi.sin(), zero), 1), | |
torch.cat((psi.sin(), psi.cos(), zero), 1), | |
torch.cat((zero, zero, one), 1) | |
), 2) | |
return torch.bmm(rot_x, torch.bmm(rot_y, rot_z)) | |
# train_val_split = int(valid_num*0.5) | |
# train_val_split = valid_num - 25 * 20 # take the last 20s as valid set. | |
train_val_split = int(valid_num * 10 / 11) | |
train_ids = torch.arange(0, train_val_split) | |
val_ids = torch.arange(train_val_split, valid_num) | |
rot = euler2rot(euler_angle) | |
rot_inv = rot.permute(0, 2, 1) | |
trans_inv = -torch.bmm(rot_inv, trans.unsqueeze(2)) | |
pose = torch.eye(4, dtype=torch.float32) | |
save_ids = ['train', 'val'] | |
train_val_ids = [train_ids, val_ids] | |
mean_z = -float(torch.mean(trans[:, 2]).item()) | |
for split in range(2): | |
transform_dict = dict() | |
transform_dict['focal_len'] = float(focal_len[0]) | |
transform_dict['cx'] = float(w/2.0) | |
transform_dict['cy'] = float(h/2.0) | |
transform_dict['frames'] = [] | |
ids = train_val_ids[split] | |
save_id = save_ids[split] | |
for i in ids: | |
i = i.item() | |
frame_dict = dict() | |
frame_dict['img_id'] = i | |
frame_dict['aud_id'] = i | |
pose[:3, :3] = rot_inv[i] | |
pose[:3, 3] = trans_inv[i, :, 0] | |
frame_dict['transform_matrix'] = pose.numpy().tolist() | |
transform_dict['frames'].append(frame_dict) | |
with open(os.path.join(base_dir, 'transforms_' + save_id + '.json'), 'w') as fp: | |
json.dump(transform_dict, fp, indent=2, separators=(',', ': ')) | |
print(f'[INFO] ===== finished saving transforms =====') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('path', type=str, help="path to video file") | |
parser.add_argument('--task', type=int, default=-1, help="-1 means all") | |
parser.add_argument('--asr', type=str, default='deepspeech', help="wav2vec or deepspeech") | |
opt = parser.parse_args() | |
base_dir = os.path.dirname(opt.path) | |
wav_path = os.path.join(base_dir, 'aud.wav') | |
ori_imgs_dir = os.path.join(base_dir, 'ori_imgs') | |
parsing_dir = os.path.join(base_dir, 'parsing') | |
gt_imgs_dir = os.path.join(base_dir, 'gt_imgs') | |
torso_imgs_dir = os.path.join(base_dir, 'torso_imgs') | |
os.makedirs(ori_imgs_dir, exist_ok=True) | |
os.makedirs(parsing_dir, exist_ok=True) | |
os.makedirs(gt_imgs_dir, exist_ok=True) | |
os.makedirs(torso_imgs_dir, exist_ok=True) | |
# extract audio | |
if opt.task == -1 or opt.task == 1: | |
extract_audio(opt.path, wav_path) | |
# extract audio features | |
if opt.task == -1 or opt.task == 2: | |
extract_audio_features(wav_path, mode=opt.asr) | |
# extract images | |
if opt.task == -1 or opt.task == 3: | |
extract_images(opt.path, ori_imgs_dir) | |
# face parsing | |
if opt.task == -1 or opt.task == 4: | |
extract_semantics(ori_imgs_dir, parsing_dir) | |
# extract bg | |
if opt.task == -1 or opt.task == 5: | |
extract_background(base_dir, ori_imgs_dir) | |
# extract torso images and gt_images | |
if opt.task == -1 or opt.task == 6: | |
extract_torso_and_gt(base_dir, ori_imgs_dir) | |
# extract face landmarks | |
if opt.task == -1 or opt.task == 7: | |
extract_landmarks(ori_imgs_dir) | |
# face tracking | |
if opt.task == -1 or opt.task == 8: | |
face_tracking(ori_imgs_dir) | |
# save transforms.json | |
if opt.task == -1 or opt.task == 9: | |
save_transforms(base_dir, ori_imgs_dir) | |