Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import render_util | |
import geo_transform | |
import numpy as np | |
def compute_tri_normal(geometry, tris): | |
geometry = geometry.permute(0, 2, 1) | |
tri_1 = tris[:, 0] | |
tri_2 = tris[:, 1] | |
tri_3 = tris[:, 2] | |
vert_1 = torch.index_select(geometry, 2, tri_1) | |
vert_2 = torch.index_select(geometry, 2, tri_2) | |
vert_3 = torch.index_select(geometry, 2, tri_3) | |
nnorm = torch.cross(vert_2 - vert_1, vert_3 - vert_1, 1) | |
normal = nn.functional.normalize(nnorm).permute(0, 2, 1) | |
return normal | |
class Compute_normal_base(torch.autograd.Function): | |
def forward(ctx, normal): | |
(normal_b,) = render_util.normal_base_forward(normal) | |
ctx.save_for_backward(normal) | |
return normal_b | |
def backward(ctx, grad_normal_b): | |
(normal,) = ctx.saved_tensors | |
(grad_normal,) = render_util.normal_base_backward(grad_normal_b, normal) | |
return grad_normal | |
class Normal_Base(torch.nn.Module): | |
def __init__(self): | |
super(Normal_Base, self).__init__() | |
def forward(self, normal): | |
return Compute_normal_base.apply(normal) | |
def preprocess_render(geometry, euler, trans, cam, tris, vert_tris, ori_img): | |
point_num = geometry.shape[1] | |
rott_geo = geo_transform.euler_trans_geo(geometry, euler, trans) | |
proj_geo = geo_transform.proj_geo(rott_geo, cam) | |
rot_tri_normal = compute_tri_normal(rott_geo, tris) | |
rot_vert_normal = torch.index_select(rot_tri_normal, 1, vert_tris) | |
is_visible = -torch.bmm( | |
rot_vert_normal.reshape(-1, 1, 3), | |
nn.functional.normalize(rott_geo.reshape(-1, 3, 1)), | |
).reshape(-1, point_num) | |
is_visible[is_visible < 0.01] = -1 | |
pixel_valid = torch.zeros( | |
(ori_img.shape[0], ori_img.shape[1] * ori_img.shape[2]), | |
dtype=torch.float32, | |
device=ori_img.device, | |
) | |
return rott_geo, proj_geo, rot_tri_normal, is_visible, pixel_valid | |
class Render_Face(torch.autograd.Function): | |
def forward( | |
ctx, proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid | |
): | |
batch_size, h, w, _ = ori_img.shape | |
ori_img = ori_img.view(batch_size, -1, 3) | |
ori_size = torch.cat( | |
( | |
torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device) | |
* h, | |
torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device) | |
* w, | |
), | |
dim=1, | |
).view(-1) | |
tri_index, tri_coord, render, real = render_util.render_face_forward( | |
proj_geo, ori_img, ori_size, texture, nbl, is_visible, tri_inds, pixel_valid | |
) | |
ctx.save_for_backward( | |
ori_img, ori_size, proj_geo, texture, nbl, tri_inds, tri_index, tri_coord | |
) | |
return render, real | |
def backward(ctx, grad_render, grad_real): | |
( | |
ori_img, | |
ori_size, | |
proj_geo, | |
texture, | |
nbl, | |
tri_inds, | |
tri_index, | |
tri_coord, | |
) = ctx.saved_tensors | |
grad_proj_geo, grad_texture, grad_nbl = render_util.render_face_backward( | |
grad_render, | |
grad_real, | |
ori_img, | |
ori_size, | |
proj_geo, | |
texture, | |
nbl, | |
tri_inds, | |
tri_index, | |
tri_coord, | |
) | |
return grad_proj_geo, grad_texture, grad_nbl, None, None, None, None | |
class Render_RGB(nn.Module): | |
def __init__(self): | |
super(Render_RGB, self).__init__() | |
def forward( | |
self, proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid | |
): | |
return Render_Face.apply( | |
proj_geo, texture, nbl, ori_img, is_visible, tri_inds, pixel_valid | |
) | |
def cal_land(proj_geo, is_visible, lands_info, land_num): | |
(land_index,) = render_util.update_contour(lands_info, is_visible, land_num) | |
proj_land = torch.index_select(proj_geo.reshape(-1, 3), 0, land_index)[ | |
:, :2 | |
].reshape(-1, land_num, 2) | |
return proj_land | |
class Render_Land(nn.Module): | |
def __init__(self): | |
super(Render_Land, self).__init__() | |
lands_info = np.loadtxt("../data/3DMM/lands_info.txt", dtype=np.int32) | |
self.lands_info = torch.as_tensor(lands_info).cuda() | |
tris = np.loadtxt("../data/3DMM/tris.txt", dtype=np.int64) | |
self.tris = torch.as_tensor(tris).cuda() - 1 | |
vert_tris = np.loadtxt("../data/3DMM/vert_tris.txt", dtype=np.int64) | |
self.vert_tris = torch.as_tensor(vert_tris).cuda() | |
self.normal_baser = Normal_Base().cuda() | |
self.renderer = Render_RGB().cuda() | |
def render_mesh(self, geometry, euler, trans, cam, ori_img, light): | |
batch_size, h, w, _ = ori_img.shape | |
ori_img = ori_img.view(batch_size, -1, 3) | |
ori_size = torch.cat( | |
( | |
torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device) | |
* h, | |
torch.ones((batch_size, 1), dtype=torch.int32, device=ori_img.device) | |
* w, | |
), | |
dim=1, | |
).view(-1) | |
rott_geo, proj_geo, rot_tri_normal, _, _ = preprocess_render( | |
geometry, euler, trans, cam, self.tris, self.vert_tris, ori_img | |
) | |
tri_nb = self.normal_baser(rot_tri_normal.contiguous()) | |
nbl = torch.bmm( | |
tri_nb, (light.reshape(-1, 9, 3))[:, :, 0].unsqueeze(-1).repeat(1, 1, 3) | |
) | |
texture = torch.ones_like(geometry) * 200 | |
(render,) = render_util.render_mesh( | |
proj_geo, ori_img, ori_size, texture, nbl, self.tris | |
) | |
return render.view(batch_size, h, w, 3).byte() | |
def cal_loss_rgb(self, geometry, euler, trans, cam, ori_img, light, texture, lands): | |
rott_geo, proj_geo, rot_tri_normal, is_visible, pixel_valid = preprocess_render( | |
geometry, euler, trans, cam, self.tris, self.vert_tris, ori_img | |
) | |
tri_nb = self.normal_baser(rot_tri_normal.contiguous()) | |
nbl = torch.bmm(tri_nb, light.reshape(-1, 9, 3)) | |
render, real = self.renderer( | |
proj_geo, texture, nbl, ori_img, is_visible, self.tris, pixel_valid | |
) | |
proj_land = cal_land(proj_geo, is_visible, self.lands_info, lands.shape[1]) | |
col_minus = torch.norm((render - real).reshape(-1, 3), dim=1).reshape( | |
ori_img.shape[0], -1 | |
) | |
col_dis = torch.mean(col_minus * pixel_valid) / ( | |
torch.mean(pixel_valid) + 0.00001 | |
) | |
land_dists = torch.norm((proj_land - lands).reshape(-1, 2), dim=1).reshape( | |
ori_img.shape[0], -1 | |
) | |
lan_dis = torch.mean(land_dists) | |
return col_dis, lan_dis | |