Spaces:
Sleeping
Sleeping
import os | |
import glob | |
import tqdm | |
import random | |
import tensorboardX | |
import librosa | |
import librosa.filters | |
from scipy import signal | |
from os.path import basename | |
import numpy as np | |
import time | |
import cv2 | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.nn.functional as F | |
import trimesh | |
import mcubes | |
from rich.console import Console | |
from torch_ema import ExponentialMovingAverage | |
from packaging import version as pver | |
import imageio | |
import lpips | |
def custom_meshgrid(*args): | |
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid | |
if pver.parse(torch.__version__) < pver.parse('1.10'): | |
return torch.meshgrid(*args) | |
else: | |
return torch.meshgrid(*args, indexing='ij') | |
def get_audio_features(features, att_mode, index): | |
if att_mode == 0: | |
return features[[index]] | |
elif att_mode == 1: | |
left = index - 8 | |
pad_left = 0 | |
if left < 0: | |
pad_left = -left | |
left = 0 | |
auds = features[left:index] | |
if pad_left > 0: | |
# pad may be longer than auds, so do not use zeros_like | |
auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0) | |
return auds | |
elif att_mode == 2: | |
left = index - 4 | |
right = index + 4 | |
pad_left = 0 | |
pad_right = 0 | |
if left < 0: | |
pad_left = -left | |
left = 0 | |
if right > features.shape[0]: | |
pad_right = right - features.shape[0] | |
right = features.shape[0] | |
auds = features[left:right] | |
if pad_left > 0: | |
auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0) | |
if pad_right > 0: | |
auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16] | |
return auds | |
else: | |
raise NotImplementedError(f'wrong att_mode: {att_mode}') | |
def linear_to_srgb(x): | |
return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055) | |
def srgb_to_linear(x): | |
return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4) | |
# copied from pytorch3d | |
def _angle_from_tan( | |
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool | |
) -> torch.Tensor: | |
""" | |
Extract the first or third Euler angle from the two members of | |
the matrix which are positive constant times its sine and cosine. | |
Args: | |
axis: Axis label "X" or "Y or "Z" for the angle we are finding. | |
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the | |
convention. | |
data: Rotation matrices as tensor of shape (..., 3, 3). | |
horizontal: Whether we are looking for the angle for the third axis, | |
which means the relevant entries are in the same row of the | |
rotation matrix. If not, they are in the same column. | |
tait_bryan: Whether the first and third axes in the convention differ. | |
Returns: | |
Euler Angles in radians for each matrix in data as a tensor | |
of shape (...). | |
""" | |
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] | |
if horizontal: | |
i2, i1 = i1, i2 | |
even = (axis + other_axis) in ["XY", "YZ", "ZX"] | |
if horizontal == even: | |
return torch.atan2(data[..., i1], data[..., i2]) | |
if tait_bryan: | |
return torch.atan2(-data[..., i2], data[..., i1]) | |
return torch.atan2(data[..., i2], -data[..., i1]) | |
def _index_from_letter(letter: str) -> int: | |
if letter == "X": | |
return 0 | |
if letter == "Y": | |
return 1 | |
if letter == "Z": | |
return 2 | |
raise ValueError("letter must be either X, Y or Z.") | |
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str = 'XYZ') -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to Euler angles in radians. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
convention: Convention string of three uppercase letters. | |
Returns: | |
Euler angles in radians as tensor of shape (..., 3). | |
""" | |
# if len(convention) != 3: | |
# raise ValueError("Convention must have 3 letters.") | |
# if convention[1] in (convention[0], convention[2]): | |
# raise ValueError(f"Invalid convention {convention}.") | |
# for letter in convention: | |
# if letter not in ("X", "Y", "Z"): | |
# raise ValueError(f"Invalid letter {letter} in convention string.") | |
# if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
# raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
i0 = _index_from_letter(convention[0]) | |
i2 = _index_from_letter(convention[2]) | |
tait_bryan = i0 != i2 | |
if tait_bryan: | |
central_angle = torch.asin( | |
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) | |
) | |
else: | |
central_angle = torch.acos(matrix[..., i0, i0]) | |
o = ( | |
_angle_from_tan( | |
convention[0], convention[1], matrix[..., i2], False, tait_bryan | |
), | |
central_angle, | |
_angle_from_tan( | |
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan | |
), | |
) | |
return torch.stack(o, -1) | |
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str='XYZ') -> torch.Tensor: | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as tensor of shape (..., 3). | |
convention: Convention string of three uppercase letters from | |
{"X", "Y", and "Z"}. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
# print(euler_angles, euler_angles.dtype) | |
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = [ | |
_axis_angle_rotation(c, e) | |
for c, e in zip(convention, torch.unbind(euler_angles, -1)) | |
] | |
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) | |
def convert_poses(poses): | |
# poses: [B, 4, 4] | |
# return [B, 3], 4 rot, 3 trans | |
out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device) | |
out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3]) | |
out[:, 3:] = poses[:, :3, 3] | |
return out | |
def get_bg_coords(H, W, device): | |
X = torch.arange(H, device=device) / (H - 1) * 2 - 1 # in [-1, 1] | |
Y = torch.arange(W, device=device) / (W - 1) * 2 - 1 # in [-1, 1] | |
xs, ys = custom_meshgrid(X, Y) | |
bg_coords = torch.cat([xs.reshape(-1, 1), ys.reshape(-1, 1)], dim=-1).unsqueeze(0) # [1, H*W, 2], in [-1, 1] | |
return bg_coords | |
def get_rays(poses, intrinsics, H, W, N=-1, patch_size=1, rect=None): | |
''' get rays | |
Args: | |
poses: [B, 4, 4], cam2world | |
intrinsics: [4] | |
H, W, N: int | |
Returns: | |
rays_o, rays_d: [B, N, 3] | |
inds: [B, N] | |
''' | |
device = poses.device | |
B = poses.shape[0] | |
fx, fy, cx, cy = intrinsics | |
if rect is not None: | |
xmin, xmax, ymin, ymax = rect | |
N = (xmax - xmin) * (ymax - ymin) | |
i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) # float | |
i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 | |
j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 | |
results = {} | |
if N > 0: | |
N = min(N, H*W) | |
if patch_size > 1: | |
# random sample left-top cores. | |
# NOTE: this impl will lead to less sampling on the image corner pixels... but I don't have other ideas. | |
num_patch = N // (patch_size ** 2) | |
inds_x = torch.randint(0, H - patch_size, size=[num_patch], device=device) | |
inds_y = torch.randint(0, W - patch_size, size=[num_patch], device=device) | |
inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2] | |
# create meshgrid for each patch | |
pi, pj = custom_meshgrid(torch.arange(patch_size, device=device), torch.arange(patch_size, device=device)) | |
offsets = torch.stack([pi.reshape(-1), pj.reshape(-1)], dim=-1) # [p^2, 2] | |
inds = inds.unsqueeze(1) + offsets.unsqueeze(0) # [np, p^2, 2] | |
inds = inds.view(-1, 2) # [N, 2] | |
inds = inds[:, 0] * W + inds[:, 1] # [N], flatten | |
inds = inds.expand([B, N]) | |
# only get rays in the specified rect | |
elif rect is not None: | |
# assert B == 1 | |
mask = torch.zeros(H, W, dtype=torch.bool, device=device) | |
xmin, xmax, ymin, ymax = rect | |
mask[xmin:xmax, ymin:ymax] = 1 | |
inds = torch.where(mask.view(-1))[0] # [nzn] | |
inds = inds.unsqueeze(0) # [1, N] | |
else: | |
inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate | |
inds = inds.expand([B, N]) | |
i = torch.gather(i, -1, inds) | |
j = torch.gather(j, -1, inds) | |
else: | |
inds = torch.arange(H*W, device=device).expand([B, H*W]) | |
results['i'] = i | |
results['j'] = j | |
results['inds'] = inds | |
zs = torch.ones_like(i) | |
xs = (i - cx) / fx * zs | |
ys = (j - cy) / fy * zs | |
directions = torch.stack((xs, ys, zs), dim=-1) | |
directions = directions / torch.norm(directions, dim=-1, keepdim=True) | |
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3) | |
rays_o = poses[..., :3, 3] # [B, 3] | |
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3] | |
results['rays_o'] = rays_o | |
results['rays_d'] = rays_d | |
return results | |
def seed_everything(seed): | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
#torch.backends.cudnn.deterministic = True | |
#torch.backends.cudnn.benchmark = True | |
def torch_vis_2d(x, renormalize=False): | |
# x: [3, H, W] or [1, H, W] or [H, W] | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
if isinstance(x, torch.Tensor): | |
if len(x.shape) == 3: | |
x = x.permute(1,2,0).squeeze() | |
x = x.detach().cpu().numpy() | |
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}') | |
x = x.astype(np.float32) | |
# renormalize | |
if renormalize: | |
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8) | |
plt.imshow(x) | |
plt.show() | |
def extract_fields(bound_min, bound_max, resolution, query_func, S=128): | |
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(S) | |
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(S) | |
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(S) | |
u = np.zeros([resolution, resolution, resolution], dtype=np.float32) | |
with torch.no_grad(): | |
for xi, xs in enumerate(X): | |
for yi, ys in enumerate(Y): | |
for zi, zs in enumerate(Z): | |
xx, yy, zz = custom_meshgrid(xs, ys, zs) | |
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3] | |
val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z] | |
u[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val | |
return u | |
def extract_geometry(bound_min, bound_max, resolution, threshold, query_func): | |
#print('threshold: {}'.format(threshold)) | |
u = extract_fields(bound_min, bound_max, resolution, query_func) | |
#print(u.shape, u.max(), u.min(), np.percentile(u, 50)) | |
vertices, triangles = mcubes.marching_cubes(u, threshold) | |
b_max_np = bound_max.detach().cpu().numpy() | |
b_min_np = bound_min.detach().cpu().numpy() | |
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :] | |
return vertices, triangles | |
class PSNRMeter: | |
def __init__(self): | |
self.V = 0 | |
self.N = 0 | |
def clear(self): | |
self.V = 0 | |
self.N = 0 | |
def prepare_inputs(self, *inputs): | |
outputs = [] | |
for i, inp in enumerate(inputs): | |
if torch.is_tensor(inp): | |
inp = inp.detach().cpu().numpy() | |
outputs.append(inp) | |
return outputs | |
def update(self, preds, truths): | |
preds, truths = self.prepare_inputs(preds, truths) # [B, N, 3] or [B, H, W, 3], range in [0, 1] | |
# simplified since max_pixel_value is 1 here. | |
psnr = -10 * np.log10(np.mean((preds - truths) ** 2)) | |
self.V += psnr | |
self.N += 1 | |
def measure(self): | |
return self.V / self.N | |
def write(self, writer, global_step, prefix=""): | |
writer.add_scalar(os.path.join(prefix, "PSNR"), self.measure(), global_step) | |
def report(self): | |
return f'PSNR = {self.measure():.6f}' | |
class LPIPSMeter: | |
def __init__(self, net='alex', device=None): | |
self.V = 0 | |
self.N = 0 | |
self.net = net | |
self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.fn = lpips.LPIPS(net=net).eval().to(self.device) | |
def clear(self): | |
self.V = 0 | |
self.N = 0 | |
def prepare_inputs(self, *inputs): | |
outputs = [] | |
for i, inp in enumerate(inputs): | |
inp = inp.permute(0, 3, 1, 2).contiguous() # [B, 3, H, W] | |
inp = inp.to(self.device) | |
outputs.append(inp) | |
return outputs | |
def update(self, preds, truths): | |
preds, truths = self.prepare_inputs(preds, truths) # [B, H, W, 3] --> [B, 3, H, W], range in [0, 1] | |
v = self.fn(truths, preds, normalize=True).item() # normalize=True: [0, 1] to [-1, 1] | |
self.V += v | |
self.N += 1 | |
def measure(self): | |
return self.V / self.N | |
def write(self, writer, global_step, prefix=""): | |
writer.add_scalar(os.path.join(prefix, f"LPIPS ({self.net})"), self.measure(), global_step) | |
def report(self): | |
return f'LPIPS ({self.net}) = {self.measure():.6f}' | |
class LMDMeter: | |
def __init__(self, backend='dlib', region='mouth'): | |
self.backend = backend | |
self.region = region # mouth or face | |
if self.backend == 'dlib': | |
import dlib | |
# load checkpoint manually | |
self.predictor_path = './shape_predictor_68_face_landmarks.dat' | |
if not os.path.exists(self.predictor_path): | |
raise FileNotFoundError('Please download dlib checkpoint from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2') | |
self.detector = dlib.get_frontal_face_detector() | |
self.predictor = dlib.shape_predictor(self.predictor_path) | |
else: | |
import face_alignment | |
try: | |
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False) | |
except: | |
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False) | |
self.V = 0 | |
self.N = 0 | |
def get_landmarks(self, img): | |
if self.backend == 'dlib': | |
dets = self.detector(img, 1) | |
for det in dets: | |
shape = self.predictor(img, det) | |
# ref: https://github.com/PyImageSearch/imutils/blob/c12f15391fcc945d0d644b85194b8c044a392e0a/imutils/face_utils/helpers.py | |
lms = np.zeros((68, 2), dtype=np.int32) | |
for i in range(0, 68): | |
lms[i, 0] = shape.part(i).x | |
lms[i, 1] = shape.part(i).y | |
break | |
else: | |
lms = self.predictor.get_landmarks(img)[-1] | |
# self.vis_landmarks(img, lms) | |
lms = lms.astype(np.float32) | |
return lms | |
def vis_landmarks(self, img, lms): | |
plt.imshow(img) | |
plt.plot(lms[48:68, 0], lms[48:68, 1], marker='o', markersize=1, linestyle='-', lw=2) | |
plt.show() | |
def clear(self): | |
self.V = 0 | |
self.N = 0 | |
def prepare_inputs(self, *inputs): | |
outputs = [] | |
for i, inp in enumerate(inputs): | |
inp = inp.detach().cpu().numpy() | |
inp = (inp * 255).astype(np.uint8) | |
outputs.append(inp) | |
return outputs | |
def update(self, preds, truths): | |
# assert B == 1 | |
preds, truths = self.prepare_inputs(preds[0], truths[0]) # [H, W, 3] numpy array | |
# get lms | |
lms_pred = self.get_landmarks(preds) | |
lms_truth = self.get_landmarks(truths) | |
if self.region == 'mouth': | |
lms_pred = lms_pred[48:68] | |
lms_truth = lms_truth[48:68] | |
# avarage | |
lms_pred = lms_pred - lms_pred.mean(0) | |
lms_truth = lms_truth - lms_truth.mean(0) | |
# distance | |
dist = np.sqrt(((lms_pred - lms_truth) ** 2).sum(1)).mean(0) | |
self.V += dist | |
self.N += 1 | |
def measure(self): | |
return self.V / self.N | |
def write(self, writer, global_step, prefix=""): | |
writer.add_scalar(os.path.join(prefix, f"LMD ({self.backend})"), self.measure(), global_step) | |
def report(self): | |
return f'LMD ({self.backend}) = {self.measure():.6f}' | |
class Trainer(object): | |
def __init__(self, | |
name, # name of this experiment | |
opt, # extra conf | |
model, # network | |
criterion=None, # loss function, if None, assume inline implementation in train_step | |
optimizer=None, # optimizer | |
ema_decay=None, # if use EMA, set the decay | |
ema_update_interval=1000, # update ema per $ training steps. | |
lr_scheduler=None, # scheduler | |
metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric. | |
local_rank=0, # which GPU am I | |
world_size=1, # total num of GPUs | |
device=None, # device to use, usually setting to None is OK. (auto choose device) | |
mute=False, # whether to mute all print | |
fp16=False, # amp optimize level | |
eval_interval=1, # eval once every $ epoch | |
max_keep_ckpt=2, # max num of saved ckpts in disk | |
workspace='workspace', # workspace to save logs & ckpts | |
best_mode='min', # the smaller/larger result, the better | |
use_loss_as_metric=True, # use loss as the first metric | |
report_metric_at_train=False, # also report metrics at training | |
use_checkpoint="latest", # which ckpt to use at init time | |
use_tensorboardX=True, # whether to use tensorboard for logging | |
scheduler_update_every_step=False, # whether to call scheduler.step() after every train step | |
): | |
self.name = name | |
self.opt = opt | |
self.mute = mute | |
self.metrics = metrics | |
self.local_rank = local_rank | |
self.world_size = world_size | |
self.workspace = workspace | |
self.ema_decay = ema_decay | |
self.ema_update_interval = ema_update_interval | |
self.fp16 = fp16 | |
self.best_mode = best_mode | |
self.use_loss_as_metric = use_loss_as_metric | |
self.report_metric_at_train = report_metric_at_train | |
self.max_keep_ckpt = max_keep_ckpt | |
self.eval_interval = eval_interval | |
self.use_checkpoint = use_checkpoint | |
self.use_tensorboardX = use_tensorboardX | |
self.flip_finetune_lips = self.opt.finetune_lips | |
self.flip_init_lips = self.opt.init_lips | |
self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S") | |
self.scheduler_update_every_step = scheduler_update_every_step | |
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu') | |
self.console = Console() | |
model.to(self.device) | |
if self.world_size > 1: | |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank]) | |
self.model = model | |
if isinstance(criterion, nn.Module): | |
criterion.to(self.device) | |
self.criterion = criterion | |
if optimizer is None: | |
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam | |
else: | |
self.optimizer = optimizer(self.model) | |
if lr_scheduler is None: | |
self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler | |
else: | |
self.lr_scheduler = lr_scheduler(self.optimizer) | |
if ema_decay is not None: | |
self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay) | |
else: | |
self.ema = None | |
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16) | |
# optionally use LPIPS loss for patch-based training | |
if self.opt.patch_size > 1 or self.opt.finetune_lips or True: | |
import lpips | |
# self.criterion_lpips_vgg = lpips.LPIPS(net='vgg').to(self.device) | |
self.criterion_lpips_alex = lpips.LPIPS(net='alex').to(self.device) | |
# variable init | |
self.epoch = 0 | |
self.global_step = 0 | |
self.local_step = 0 | |
self.stats = { | |
"loss": [], | |
"valid_loss": [], | |
"results": [], # metrics[0], or valid_loss | |
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt | |
"best_result": None, | |
} | |
# auto fix | |
if len(metrics) == 0 or self.use_loss_as_metric: | |
self.best_mode = 'min' | |
# workspace prepare | |
self.log_ptr = None | |
if self.workspace is not None: | |
os.makedirs(self.workspace, exist_ok=True) | |
self.log_path = os.path.join(workspace, f"log_{self.name}.txt") | |
self.log_ptr = open(self.log_path, "a+") | |
self.ckpt_path = os.path.join(self.workspace, 'checkpoints') | |
self.best_path = f"{self.ckpt_path}/{self.name}.pth" | |
os.makedirs(self.ckpt_path, exist_ok=True) | |
self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}') | |
self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}') | |
if self.workspace is not None: | |
if self.use_checkpoint == "scratch": | |
self.log("[INFO] Training from scratch ...") | |
elif self.use_checkpoint == "latest": | |
self.log("[INFO] Loading latest checkpoint ...") | |
self.load_checkpoint() | |
elif self.use_checkpoint == "latest_model": | |
self.log("[INFO] Loading latest checkpoint (model only)...") | |
self.load_checkpoint(model_only=True) | |
elif self.use_checkpoint == "best": | |
if os.path.exists(self.best_path): | |
self.log("[INFO] Loading best checkpoint ...") | |
self.load_checkpoint(self.best_path) | |
else: | |
self.log(f"[INFO] {self.best_path} not found, loading latest ...") | |
self.load_checkpoint() | |
else: # path to ckpt | |
self.log(f"[INFO] Loading {self.use_checkpoint} ...") | |
self.load_checkpoint(self.use_checkpoint) | |
def __del__(self): | |
if self.log_ptr: | |
self.log_ptr.close() | |
def log(self, *args, **kwargs): | |
if self.local_rank == 0: | |
if not self.mute: | |
#print(*args) | |
self.console.print(*args, **kwargs) | |
if self.log_ptr: | |
print(*args, file=self.log_ptr) | |
self.log_ptr.flush() # write immediately to file | |
### ------------------------------ | |
def train_step(self, data): | |
rays_o = data['rays_o'] # [B, N, 3] | |
rays_d = data['rays_d'] # [B, N, 3] | |
bg_coords = data['bg_coords'] # [1, N, 2] | |
poses = data['poses'] # [B, 6] | |
face_mask = data['face_mask'] # [B, N] | |
eye_mask = data['eye_mask'] # [B, N] | |
lhalf_mask = data['lhalf_mask'] | |
eye = data['eye'] # [B, 1] | |
auds = data['auds'] # [B, 29, 16] | |
index = data['index'] # [B] | |
if not self.opt.torso: | |
rgb = data['images'] # [B, N, 3] | |
else: | |
rgb = data['bg_torso_color'] | |
B, N, C = rgb.shape | |
if self.opt.color_space == 'linear': | |
rgb[..., :3] = srgb_to_linear(rgb[..., :3]) | |
bg_color = data['bg_color'] | |
if not self.opt.torso: | |
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt)) | |
else: | |
outputs = self.model.render_torso(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt)) | |
if not self.opt.torso: | |
pred_rgb = outputs['image'] | |
else: | |
pred_rgb = outputs['torso_color'] | |
# loss factor | |
step_factor = min(self.global_step / self.opt.iters, 1.0) | |
# MSE loss | |
loss = self.criterion(pred_rgb, rgb).mean(-1) # [B, N, 3] --> [B, N] | |
if self.opt.torso: | |
loss = loss.mean() | |
loss += ((1 - self.model.anchor_points[:, 3])**2).mean() | |
return pred_rgb, rgb, loss | |
# camera optim regularization | |
# if self.opt.train_camera: | |
# cam_reg = self.model.camera_dR[index].abs().mean() + self.model.camera_dT[index].abs().mean() | |
# loss = loss + 1e-2 * cam_reg | |
if self.opt.unc_loss and not self.flip_finetune_lips: | |
alpha = 0.2 | |
uncertainty = outputs['uncertainty'] # [N], abs sum | |
beta = uncertainty + 1 | |
unc_weight = F.softmax(uncertainty, dim=-1) * N | |
# print(unc_weight.shape, unc_weight.max(), unc_weight.min()) | |
loss *= alpha + (1-alpha)*((1 - step_factor) + step_factor * unc_weight.detach()).clamp(0, 10) | |
# loss *= unc_weight.detach() | |
beta = uncertainty + 1 | |
norm_rgb = torch.norm((pred_rgb - rgb), dim=-1).detach() | |
loss_u = norm_rgb / (2*beta**2) + (torch.log(beta)**2) / 2 | |
loss_u *= face_mask.view(-1) | |
loss += step_factor * loss_u | |
loss_static_uncertainty = (uncertainty * (~face_mask.view(-1))) | |
loss += 1e-3 * step_factor * loss_static_uncertainty | |
# patch-based rendering | |
if self.opt.patch_size > 1 and not self.opt.finetune_lips: | |
rgb = rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 | |
pred_rgb = pred_rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 | |
# torch_vis_2d(rgb[0]) | |
# torch_vis_2d(pred_rgb[0]) | |
# LPIPS loss ? | |
loss_lpips = self.criterion_lpips_alex(pred_rgb, rgb) | |
loss = loss + 0.1 * loss_lpips | |
# lips finetune | |
if self.opt.finetune_lips: | |
xmin, xmax, ymin, ymax = data['rect'] | |
rgb = rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 | |
pred_rgb = pred_rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous() * 2 - 1 | |
padding_h = max(0, (32 - rgb.shape[-2] + 1) // 2) | |
padding_w = max(0, (32 - rgb.shape[-1] + 1) // 2) | |
if padding_w or padding_h: | |
rgb = torch.nn.functional.pad(rgb, (padding_w, padding_w, padding_h, padding_h)) | |
pred_rgb = torch.nn.functional.pad(pred_rgb, (padding_w, padding_w, padding_h, padding_h)) | |
# torch_vis_2d(rgb[0]) | |
# torch_vis_2d(pred_rgb[0]) | |
# LPIPS loss | |
loss = loss + 0.01 * self.criterion_lpips_alex(pred_rgb, rgb) | |
# flip every step... if finetune lips | |
if self.flip_finetune_lips: | |
self.opt.finetune_lips = not self.opt.finetune_lips | |
loss = loss.mean() | |
# weights_sum loss | |
# entropy to encourage weights_sum to be 0 or 1. | |
if self.opt.torso: | |
alphas = outputs['torso_alpha'].clamp(1e-5, 1 - 1e-5) | |
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1 | |
loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas) | |
loss = loss + 1e-4 * loss_ws.mean() | |
else: | |
alphas = outputs['weights_sum'].clamp(1e-5, 1 - 1e-5) | |
loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas) | |
loss = loss + 1e-4 * loss_ws.mean() | |
# aud att loss (regions out of face should be static) | |
if self.opt.amb_aud_loss and not self.opt.torso: | |
ambient_aud = outputs['ambient_aud'] | |
loss_amb_aud = (ambient_aud * (~face_mask.view(-1))).mean() | |
# gradually increase it | |
lambda_amb = step_factor * self.opt.lambda_amb | |
loss += lambda_amb * loss_amb_aud | |
# eye att loss | |
if self.opt.amb_eye_loss and not self.opt.torso: | |
ambient_eye = outputs['ambient_eye'] / self.opt.max_steps | |
loss_cross = ((ambient_eye * ambient_aud.detach())*face_mask.view(-1)).mean() | |
loss += lambda_amb * loss_cross | |
# regularize | |
if self.global_step % 16 == 0 and not self.flip_finetune_lips: | |
xyzs, dirs, enc_a, ind_code, eye = outputs['rays'] | |
xyz_delta = (torch.rand(size=xyzs.shape, dtype=xyzs.dtype, device=xyzs.device) * 2 - 1) * 1e-3 | |
with torch.no_grad(): | |
sigmas_raw, rgbs_raw, ambient_aud_raw, ambient_eye_raw, unc_raw = self.model(xyzs, dirs, enc_a.detach(), ind_code.detach(), eye) | |
sigmas_reg, rgbs_reg, ambient_aud_reg, ambient_eye_reg, unc_reg = self.model(xyzs+xyz_delta, dirs, enc_a.detach(), ind_code.detach(), eye) | |
lambda_reg = step_factor * 1e-5 | |
reg_loss = 0 | |
if self.opt.unc_loss: | |
reg_loss += self.criterion(unc_raw, unc_reg).mean() | |
if self.opt.amb_aud_loss: | |
reg_loss += self.criterion(ambient_aud_raw, ambient_aud_reg).mean() | |
if self.opt.amb_eye_loss: | |
reg_loss += self.criterion(ambient_eye_raw, ambient_eye_reg).mean() | |
loss += reg_loss * lambda_reg | |
return pred_rgb, rgb, loss | |
def eval_step(self, data): | |
rays_o = data['rays_o'] # [B, N, 3] | |
rays_d = data['rays_d'] # [B, N, 3] | |
bg_coords = data['bg_coords'] # [1, N, 2] | |
poses = data['poses'] # [B, 7] | |
images = data['images'] # [B, H, W, 3/4] | |
auds = data['auds'] | |
index = data['index'] # [B] | |
eye = data['eye'] # [B, 1] | |
B, H, W, C = images.shape | |
if self.opt.color_space == 'linear': | |
images[..., :3] = srgb_to_linear(images[..., :3]) | |
# eval with fixed background color | |
# bg_color = 1 | |
bg_color = data['bg_color'] | |
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=False, **vars(self.opt)) | |
pred_rgb = outputs['image'].reshape(B, H, W, 3) | |
pred_depth = outputs['depth'].reshape(B, H, W) | |
pred_ambient_aud = outputs['ambient_aud'].reshape(B, H, W) | |
pred_ambient_eye = outputs['ambient_eye'].reshape(B, H, W) | |
pred_uncertainty = outputs['uncertainty'].reshape(B, H, W) | |
loss_raw = self.criterion(pred_rgb, images) | |
loss = loss_raw.mean() | |
return pred_rgb, pred_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, images, loss, loss_raw | |
# moved out bg_color and perturb for more flexible control... | |
def test_step(self, data, bg_color=None, perturb=False): | |
rays_o = data['rays_o'] # [B, N, 3] | |
rays_d = data['rays_d'] # [B, N, 3] | |
bg_coords = data['bg_coords'] # [1, N, 2] | |
poses = data['poses'] # [B, 7] | |
auds = data['auds'] # [B, 29, 16] | |
index = data['index'] | |
H, W = data['H'], data['W'] | |
# allow using a fixed eye area (avoid eye blink) at test | |
if self.opt.exp_eye and self.opt.fix_eye >= 0: | |
eye = torch.FloatTensor([self.opt.fix_eye]).view(1, 1).to(self.device) | |
else: | |
eye = data['eye'] # [B, 1] | |
if bg_color is not None: | |
bg_color = bg_color.to(self.device) | |
else: | |
bg_color = data['bg_color'] | |
self.model.testing = True | |
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=perturb, **vars(self.opt)) | |
self.model.testing = False | |
pred_rgb = outputs['image'].reshape(-1, H, W, 3) | |
pred_depth = outputs['depth'].reshape(-1, H, W) | |
return pred_rgb, pred_depth | |
def save_mesh(self, save_path=None, resolution=256, threshold=10): | |
if save_path is None: | |
save_path = os.path.join(self.workspace, 'meshes', f'{self.name}_{self.epoch}.ply') | |
self.log(f"==> Saving mesh to {save_path}") | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
def query_func(pts): | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
sigma = self.model.density(pts.to(self.device))['sigma'] | |
return sigma | |
vertices, triangles = extract_geometry(self.model.aabb_infer[:3], self.model.aabb_infer[3:], resolution=resolution, threshold=threshold, query_func=query_func) | |
mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault... | |
mesh.export(save_path) | |
self.log(f"==> Finished saving mesh.") | |
### ------------------------------ | |
def train(self, train_loader, valid_loader, max_epochs): | |
if self.use_tensorboardX and self.local_rank == 0: | |
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name)) | |
# mark untrained region (i.e., not covered by any camera from the training dataset) | |
if self.model.cuda_ray: | |
self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics) | |
for epoch in range(self.epoch + 1, max_epochs + 1): | |
self.epoch = epoch | |
self.train_one_epoch(train_loader) | |
if self.workspace is not None and self.local_rank == 0: | |
self.save_checkpoint(full=True, best=False) | |
if self.epoch % self.eval_interval == 0: | |
self.evaluate_one_epoch(valid_loader) | |
self.save_checkpoint(full=False, best=True) | |
if self.use_tensorboardX and self.local_rank == 0: | |
self.writer.close() | |
def evaluate(self, loader, name=None): | |
self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX | |
self.evaluate_one_epoch(loader, name) | |
self.use_tensorboardX = use_tensorboardX | |
def test(self, loader, save_path=None, name=None, write_image=False): | |
if save_path is None: | |
save_path = os.path.join(self.workspace, 'results') | |
if name is None: | |
name = f'{self.name}_ep{self.epoch:04d}' | |
os.makedirs(save_path, exist_ok=True) | |
self.log(f"==> Start Test, save results to {save_path}") | |
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') | |
self.model.eval() | |
all_preds = [] | |
all_preds_depth = [] | |
with torch.no_grad(): | |
for i, data in enumerate(loader): | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
preds, preds_depth = self.test_step(data) | |
path = os.path.join(save_path, f'{name}_{i:04d}_rgb.png') | |
path_depth = os.path.join(save_path, f'{name}_{i:04d}_depth.png') | |
#self.log(f"[INFO] saving test image to {path}") | |
if self.opt.color_space == 'linear': | |
preds = linear_to_srgb(preds) | |
pred = preds[0].detach().cpu().numpy() | |
pred = (pred * 255).astype(np.uint8) | |
pred_depth = preds_depth[0].detach().cpu().numpy() | |
pred_depth = (pred_depth * 255).astype(np.uint8) | |
if write_image: | |
imageio.imwrite(path, pred) | |
imageio.imwrite(path_depth, pred_depth) | |
all_preds.append(pred) | |
all_preds_depth.append(pred_depth) | |
pbar.update(loader.batch_size) | |
# write video | |
all_preds = np.stack(all_preds, axis=0) | |
all_preds_depth = np.stack(all_preds_depth, axis=0) | |
imageio.mimwrite(os.path.join(save_path, f'{name}.mp4'), all_preds, fps=25, quality=8, macro_block_size=1) | |
imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1) | |
# imageio.mimwrite(os.path.join(save_path, f'{name}_depth.mp4'), all_preds_depth, fps=25, quality=8, macro_block_size=1) | |
# print('-'*100. self.opt.aud) | |
if self.opt.aud != '': | |
# print(f'ffmpeg -i {os.path.join(save_path, f"{name}.mp4")} -i {self.opt.aud} -strict -2 {os.path.join(save_path, f"{name}_audio.mp4")} -y') | |
os.system(f'ffmpeg -i {os.path.join(save_path, f"{name}.mp4")} -i {self.opt.aud} -strict -2 {os.path.join(save_path, f"{name}_audio.mp4")} -y') | |
self.log(f"==> Finished Test.") | |
# [GUI] just train for 16 steps, without any other overhead that may slow down rendering. | |
def train_gui(self, train_loader, step=16): | |
self.model.train() | |
total_loss = torch.tensor([0], dtype=torch.float32, device=self.device) | |
loader = iter(train_loader) | |
# mark untrained grid | |
if self.global_step == 0: | |
self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics) | |
for _ in range(step): | |
# mimic an infinite loop dataloader (in case the total dataset is smaller than step) | |
try: | |
data = next(loader) | |
except StopIteration: | |
loader = iter(train_loader) | |
data = next(loader) | |
# update grid every 16 steps | |
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
self.model.update_extra_state() | |
self.global_step += 1 | |
self.optimizer.zero_grad() | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
preds, truths, loss = self.train_step(data) | |
self.scaler.scale(loss).backward() | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
if self.scheduler_update_every_step: | |
self.lr_scheduler.step() | |
total_loss += loss.detach() | |
if self.ema is not None and self.global_step % self.ema_update_interval == 0: | |
self.ema.update() | |
average_loss = total_loss.item() / step | |
if not self.scheduler_update_every_step: | |
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): | |
self.lr_scheduler.step(average_loss) | |
else: | |
self.lr_scheduler.step() | |
outputs = { | |
'loss': average_loss, | |
'lr': self.optimizer.param_groups[0]['lr'], | |
} | |
return outputs | |
# [GUI] test on a single image | |
def test_gui(self, pose, intrinsics, W, H, auds, eye=None, index=0, bg_color=None, spp=1, downscale=1): | |
# render resolution (may need downscale to for better frame rate) | |
rH = int(H * downscale) | |
rW = int(W * downscale) | |
intrinsics = intrinsics * downscale | |
if auds is not None: | |
auds = auds.to(self.device) | |
pose = torch.from_numpy(pose).unsqueeze(0).to(self.device) | |
rays = get_rays(pose, intrinsics, rH, rW, -1) | |
bg_coords = get_bg_coords(rH, rW, self.device) | |
if eye is not None: | |
eye = torch.FloatTensor([eye]).view(1, 1).to(self.device) | |
data = { | |
'rays_o': rays['rays_o'], | |
'rays_d': rays['rays_d'], | |
'H': rH, | |
'W': rW, | |
'auds': auds, | |
'index': [index], # support choosing index for individual codes | |
'eye': eye, | |
'poses': pose, | |
'bg_coords': bg_coords, | |
} | |
self.model.eval() | |
if self.ema is not None: | |
self.ema.store() | |
self.ema.copy_to() | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
# here spp is used as perturb random seed! | |
# face: do not perturb for the first spp, else lead to scatters. | |
preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=False if spp == 1 else spp) | |
if self.ema is not None: | |
self.ema.restore() | |
# interpolation to the original resolution | |
if downscale != 1: | |
# TODO: have to permute twice with torch... | |
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous() | |
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1) | |
if self.opt.color_space == 'linear': | |
preds = linear_to_srgb(preds) | |
pred = preds[0].detach().cpu().numpy() | |
pred_depth = preds_depth[0].detach().cpu().numpy() | |
outputs = { | |
'image': pred, | |
'depth': pred_depth, | |
} | |
return outputs | |
# [GUI] test with provided data | |
def test_gui_with_data(self, data, W, H): | |
self.model.eval() | |
if self.ema is not None: | |
self.ema.store() | |
self.ema.copy_to() | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
# here spp is used as perturb random seed! | |
# face: do not perturb for the first spp, else lead to scatters. | |
preds, preds_depth = self.test_step(data, perturb=False) | |
if self.ema is not None: | |
self.ema.restore() | |
if self.opt.color_space == 'linear': | |
preds = linear_to_srgb(preds) | |
# the H/W in data may be differnt to GUI, so we still need to resize... | |
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous() | |
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1) | |
pred = preds[0].detach().cpu().numpy() | |
pred_depth = preds_depth[0].detach().cpu().numpy() | |
outputs = { | |
'image': pred, | |
'depth': pred_depth, | |
} | |
return outputs | |
def train_one_epoch(self, loader): | |
self.log(f"==> Start Training Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...") | |
total_loss = 0 | |
if self.local_rank == 0 and self.report_metric_at_train: | |
for metric in self.metrics: | |
metric.clear() | |
self.model.train() | |
# distributedSampler: must call set_epoch() to shuffle indices across multiple epochs | |
# ref: https://pytorch.org/docs/stable/data.html | |
if self.world_size > 1: | |
loader.sampler.set_epoch(self.epoch) | |
if self.local_rank == 0: | |
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, mininterval=1, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') | |
self.local_step = 0 | |
for data in loader: | |
# update grid every 16 steps | |
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0: | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
self.model.update_extra_state() | |
self.local_step += 1 | |
self.global_step += 1 | |
self.optimizer.zero_grad() | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
preds, truths, loss = self.train_step(data) | |
self.scaler.scale(loss).backward() | |
self.scaler.step(self.optimizer) | |
self.scaler.update() | |
if self.scheduler_update_every_step: | |
self.lr_scheduler.step() | |
loss_val = loss.item() | |
total_loss += loss_val | |
if self.ema is not None and self.global_step % self.ema_update_interval == 0: | |
self.ema.update() | |
if self.local_rank == 0: | |
if self.report_metric_at_train: | |
for metric in self.metrics: | |
metric.update(preds, truths) | |
if self.use_tensorboardX: | |
self.writer.add_scalar("train/loss", loss_val, self.global_step) | |
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step) | |
if self.scheduler_update_every_step: | |
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}") | |
else: | |
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") | |
pbar.update(loader.batch_size) | |
average_loss = total_loss / self.local_step | |
self.stats["loss"].append(average_loss) | |
if self.local_rank == 0: | |
pbar.close() | |
if self.report_metric_at_train: | |
for metric in self.metrics: | |
self.log(metric.report(), style="red") | |
if self.use_tensorboardX: | |
metric.write(self.writer, self.epoch, prefix="train") | |
metric.clear() | |
if not self.scheduler_update_every_step: | |
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): | |
self.lr_scheduler.step(average_loss) | |
else: | |
self.lr_scheduler.step() | |
self.log(f"==> Finished Epoch {self.epoch}.") | |
def evaluate_one_epoch(self, loader, name=None): | |
self.log(f"++> Evaluate at epoch {self.epoch} ...") | |
if name is None: | |
name = f'{self.name}_ep{self.epoch:04d}' | |
total_loss = 0 | |
if self.local_rank == 0: | |
for metric in self.metrics: | |
metric.clear() | |
self.model.eval() | |
if self.ema is not None: | |
self.ema.store() | |
self.ema.copy_to() | |
if self.local_rank == 0: | |
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]') | |
with torch.no_grad(): | |
self.local_step = 0 | |
for data in loader: | |
self.local_step += 1 | |
with torch.cuda.amp.autocast(enabled=self.fp16): | |
preds, preds_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, truths, loss, loss_raw = self.eval_step(data) | |
loss_val = loss.item() | |
total_loss += loss_val | |
# only rank = 0 will perform evaluation. | |
if self.local_rank == 0: | |
for metric in self.metrics: | |
metric.update(preds, truths) | |
# save image | |
save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png') | |
save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png') | |
# save_path_error = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_errormap.png') | |
save_path_ambient_aud = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_aud.png') | |
save_path_ambient_eye = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_eye.png') | |
save_path_uncertainty = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_uncertainty.png') | |
#save_path_gt = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_gt.png') | |
#self.log(f"==> Saving validation image to {save_path}") | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
if self.opt.color_space == 'linear': | |
preds = linear_to_srgb(preds) | |
pred = preds[0].detach().cpu().numpy() | |
pred_depth = preds_depth[0].detach().cpu().numpy() | |
# loss_raw = loss_raw[0].mean(-1).detach().cpu().numpy() | |
# loss_raw = (loss_raw - np.min(loss_raw)) / (np.max(loss_raw) - np.min(loss_raw)) | |
pred_ambient_aud = pred_ambient_aud[0].detach().cpu().numpy() | |
pred_ambient_aud /= np.max(pred_ambient_aud) | |
pred_ambient_eye = pred_ambient_eye[0].detach().cpu().numpy() | |
pred_ambient_eye /= np.max(pred_ambient_eye) | |
# pred_ambient = pred_ambient / 16 | |
# print(pred_ambient.shape) | |
pred_uncertainty = pred_uncertainty[0].detach().cpu().numpy() | |
# pred_uncertainty = (pred_uncertainty - np.min(pred_uncertainty)) / (np.max(pred_uncertainty) - np.min(pred_uncertainty)) | |
pred_uncertainty /= np.max(pred_uncertainty) | |
cv2.imwrite(save_path, cv2.cvtColor((pred * 255).astype(np.uint8), cv2.COLOR_RGB2BGR)) | |
if not self.opt.torso: | |
cv2.imwrite(save_path_depth, (pred_depth * 255).astype(np.uint8)) | |
# cv2.imwrite(save_path_error, (loss_raw * 255).astype(np.uint8)) | |
cv2.imwrite(save_path_ambient_aud, (pred_ambient_aud * 255).astype(np.uint8)) | |
cv2.imwrite(save_path_ambient_eye, (pred_ambient_eye * 255).astype(np.uint8)) | |
cv2.imwrite(save_path_uncertainty, (pred_uncertainty * 255).astype(np.uint8)) | |
#cv2.imwrite(save_path_gt, cv2.cvtColor((linear_to_srgb(truths[0].detach().cpu().numpy()) * 255).astype(np.uint8), cv2.COLOR_RGB2BGR)) | |
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})") | |
pbar.update(loader.batch_size) | |
average_loss = total_loss / self.local_step | |
self.stats["valid_loss"].append(average_loss) | |
if self.local_rank == 0: | |
pbar.close() | |
if not self.use_loss_as_metric and len(self.metrics) > 0: | |
result = self.metrics[0].measure() | |
self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result | |
else: | |
self.stats["results"].append(average_loss) # if no metric, choose best by min loss | |
for metric in self.metrics: | |
self.log(metric.report(), style="blue") | |
if self.use_tensorboardX: | |
metric.write(self.writer, self.epoch, prefix="evaluate") | |
metric.clear() | |
if self.ema is not None: | |
self.ema.restore() | |
self.log(f"++> Evaluate epoch {self.epoch} Finished.") | |
def save_checkpoint(self, name=None, full=False, best=False, remove_old=True): | |
if name is None: | |
name = f'{self.name}_ep{self.epoch:04d}' | |
state = { | |
'epoch': self.epoch, | |
'global_step': self.global_step, | |
'stats': self.stats, | |
} | |
state['mean_count'] = self.model.mean_count | |
state['mean_density'] = self.model.mean_density | |
state['mean_density_torso'] = self.model.mean_density_torso | |
if full: | |
state['optimizer'] = self.optimizer.state_dict() | |
state['lr_scheduler'] = self.lr_scheduler.state_dict() | |
state['scaler'] = self.scaler.state_dict() | |
if self.ema is not None: | |
state['ema'] = self.ema.state_dict() | |
if not best: | |
state['model'] = self.model.state_dict() | |
file_path = f"{self.ckpt_path}/{name}.pth" | |
if remove_old: | |
self.stats["checkpoints"].append(file_path) | |
if len(self.stats["checkpoints"]) > self.max_keep_ckpt: | |
old_ckpt = self.stats["checkpoints"].pop(0) | |
if os.path.exists(old_ckpt): | |
os.remove(old_ckpt) | |
torch.save(state, file_path) | |
else: | |
if len(self.stats["results"]) > 0: | |
# always save new as best... (since metric cannot really reflect performance...) | |
if True: | |
# save ema results | |
if self.ema is not None: | |
self.ema.store() | |
self.ema.copy_to() | |
state['model'] = self.model.state_dict() | |
# we don't consider continued training from the best ckpt, so we discard the unneeded density_grid to save some storage (especially important for dnerf) | |
if 'density_grid' in state['model']: | |
del state['model']['density_grid'] | |
if self.ema is not None: | |
self.ema.restore() | |
torch.save(state, self.best_path) | |
else: | |
self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.") | |
def load_checkpoint(self, checkpoint=None, model_only=False): | |
if checkpoint is None: | |
checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/{self.name}_ep*.pth')) | |
if checkpoint_list: | |
checkpoint = checkpoint_list[-1] | |
self.log(f"[INFO] Latest checkpoint is {checkpoint}") | |
else: | |
self.log("[WARN] No checkpoint found, model randomly initialized.") | |
return | |
checkpoint_dict = torch.load(checkpoint, map_location=self.device) | |
if 'model' not in checkpoint_dict: | |
self.model.load_state_dict(checkpoint_dict) | |
self.log("[INFO] loaded bare model.") | |
return | |
missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False) | |
self.log("[INFO] loaded model.") | |
if len(missing_keys) > 0: | |
self.log(f"[WARN] missing keys: {missing_keys}") | |
if len(unexpected_keys) > 0: | |
self.log(f"[WARN] unexpected keys: {unexpected_keys}") | |
if self.ema is not None and 'ema' in checkpoint_dict: | |
self.ema.load_state_dict(checkpoint_dict['ema']) | |
if 'mean_count' in checkpoint_dict: | |
self.model.mean_count = checkpoint_dict['mean_count'] | |
if 'mean_density' in checkpoint_dict: | |
self.model.mean_density = checkpoint_dict['mean_density'] | |
if 'mean_density_torso' in checkpoint_dict: | |
self.model.mean_density_torso = checkpoint_dict['mean_density_torso'] | |
if model_only: | |
return | |
self.stats = checkpoint_dict['stats'] | |
self.epoch = checkpoint_dict['epoch'] | |
self.global_step = checkpoint_dict['global_step'] | |
self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}") | |
if self.optimizer and 'optimizer' in checkpoint_dict: | |
try: | |
self.optimizer.load_state_dict(checkpoint_dict['optimizer']) | |
self.log("[INFO] loaded optimizer.") | |
except: | |
self.log("[WARN] Failed to load optimizer.") | |
if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict: | |
try: | |
self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler']) | |
self.log("[INFO] loaded scheduler.") | |
except: | |
self.log("[WARN] Failed to load scheduler.") | |
if self.scaler and 'scaler' in checkpoint_dict: | |
try: | |
self.scaler.load_state_dict(checkpoint_dict['scaler']) | |
self.log("[INFO] loaded scaler.") | |
except: | |
self.log("[WARN] Failed to load scaler.") | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr)[0] | |
def preemphasis(wav, k): | |
return signal.lfilter([1, -k], [1], wav) | |
def melspectrogram(wav): | |
D = _stft(preemphasis(wav, 0.97)) | |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - 20 | |
return _normalize(S) | |
def _stft(y): | |
return librosa.stft(y=y, n_fft=800, hop_length=200, win_length=800) | |
def _linear_to_mel(spectogram): | |
global _mel_basis | |
_mel_basis = _build_mel_basis() | |
return np.dot(_mel_basis, spectogram) | |
def _build_mel_basis(): | |
return librosa.filters.mel(sr=16000, n_fft=800, n_mels=80, fmin=55, fmax=7600) | |
def _amp_to_db(x): | |
min_level = np.exp(-5 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _normalize(S): | |
return np.clip((2 * 4.) * ((S - -100) / (--100)) - 4., -4., 4.) | |
class AudDataset(object): | |
def __init__(self, wavpath): | |
wav = load_wav(wavpath, 16000) | |
self.orig_mel = melspectrogram(wav).T | |
self.data_len = int((self.orig_mel.shape[0] - 16) / 80. * float(25)) | |
def get_frame_id(self, frame): | |
return int(basename(frame).split('.')[0]) | |
def crop_audio_window(self, spec, start_frame): | |
if type(start_frame) == int: | |
start_frame_num = start_frame | |
else: | |
start_frame_num = self.get_frame_id(start_frame) | |
start_idx = int(80. * (start_frame_num / float(25))) | |
end_idx = start_idx + 16 | |
return spec[start_idx: end_idx, :] | |
def __len__(self): | |
return self.data_len | |
def __getitem__(self, idx): | |
mel = self.crop_audio_window(self.orig_mel.copy(), idx) | |
if (mel.shape[0] != 16): | |
raise Exception('mel.shape[0] != 16') | |
mel = torch.FloatTensor(mel.T).unsqueeze(0) | |
return mel |