linly / NeRF /nerf_triplane /provider.py
David Victor
init
bc3753a
raw
history blame
34.1 kB
import os
import cv2
import glob
import json
import tqdm
import numpy as np
from scipy.spatial.transform import Slerp, Rotation
import matplotlib.pyplot as plt
import trimesh
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from .utils import get_audio_features, get_rays, get_bg_coords, convert_poses, AudDataset
# ref: https://github.com/NVlabs/instant-ngp/blob/b76004c8cf478880227401ae763be4c02f80b62f/include/neural-graphics-primitives/nerf_loader.h#L50
def nerf_matrix_to_ngp(pose, scale=0.33, offset=[0, 0, 0]):
new_pose = np.array([
[pose[1, 0], -pose[1, 1], -pose[1, 2], pose[1, 3] * scale + offset[0]],
[pose[2, 0], -pose[2, 1], -pose[2, 2], pose[2, 3] * scale + offset[1]],
[pose[0, 0], -pose[0, 1], -pose[0, 2], pose[0, 3] * scale + offset[2]],
[0, 0, 0, 1],
], dtype=np.float32)
return new_pose
def smooth_camera_path(poses, kernel_size=5):
# smooth the camera trajectory...
# poses: [N, 4, 4], numpy array
N = poses.shape[0]
K = kernel_size // 2
trans = poses[:, :3, 3].copy() # [N, 3]
rots = poses[:, :3, :3].copy() # [N, 3, 3]
for i in range(N):
start = max(0, i - K)
end = min(N, i + K + 1)
poses[i, :3, 3] = trans[start:end].mean(0)
poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix()
return poses
def polygon_area(x, y):
x_ = x - x.mean()
y_ = y - y.mean()
correction = x_[-1] * y_[0] - y_[-1]* x_[0]
main_area = np.dot(x_[:-1], y_[1:]) - np.dot(y_[:-1], x_[1:])
return 0.5 * np.abs(main_area + correction)
def visualize_poses(poses, size=0.1):
# poses: [B, 4, 4]
print(f'[INFO] visualize poses: {poses.shape}')
axes = trimesh.creation.axis(axis_length=4)
box = trimesh.primitives.Box(extents=(2, 2, 2)).as_outline()
box.colors = np.array([[128, 128, 128]] * len(box.entities))
objects = [axes, box]
for pose in poses:
# a camera is visualized with 8 line segments.
pos = pose[:3, 3]
a = pos + size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
b = pos - size * pose[:3, 0] + size * pose[:3, 1] + size * pose[:3, 2]
c = pos - size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]
d = pos + size * pose[:3, 0] - size * pose[:3, 1] + size * pose[:3, 2]
dir = (a + b + c + d) / 4 - pos
dir = dir / (np.linalg.norm(dir) + 1e-8)
o = pos + dir * 3
segs = np.array([[pos, a], [pos, b], [pos, c], [pos, d], [a, b], [b, c], [c, d], [d, a], [pos, o]])
segs = trimesh.load_path(segs)
objects.append(segs)
trimesh.Scene(objects).show()
from .wav2vec import *
class NeRFDataset_Test:
def __init__(self, opt, device, downscale=1):
super().__init__()
self.opt = opt
self.device = device
self.downscale = downscale
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
self.offset = opt.offset # camera offset
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
self.fp16 = opt.fp16
self.start_index = opt.data_range[0]
self.end_index = opt.data_range[1]
self.training = False
self.num_rays = -1
# load nerf-compatible format data.
with open(opt.pose, 'r') as f:
transform = json.load(f)
# load image size
self.H = int(transform['cy']) * 2 // downscale
self.W = int(transform['cx']) * 2 // downscale
# read images
frames = transform["frames"]
# use a slice of the dataset
if self.end_index == -1: # abuse...
self.end_index = len(frames)
frames = frames[self.start_index:self.end_index]
print(f'[INFO] load {len(frames)} frames.')
# only load pre-calculated aud features when not live-streaming
if not self.opt.asr:
if self.opt.aud.endswith('npy'):
aud_features = np.load(self.opt.aud)
elif self.opt.aud.endswith('wav'):
if self.opt.asr_model == 'cpierse/wav2vec2-large-xlsr-53-esperanto':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--wav', type=str, default='')
parser.add_argument('--play', action='store_true', help="play out the audio")
parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
# parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')
parser.add_argument('--save_feats', action='store_true')
# audio FPS
parser.add_argument('--fps', type=int, default=50)
# sliding window left-middle-right length.
parser.add_argument('-l', type=int, default=10)
parser.add_argument('-m', type=int, default=50)
parser.add_argument('-r', type=int, default=10)
opt = parser.parse_args()
# fix
opt.asr_wav = self.opt.aud
opt.asr_play = opt.play
opt.asr_save_feats = True
opt.asr_model = opt.model
# 利用预训练的Wav2vec来跑一下
with ASR(opt) as asr:
asr.run()
# os.system(f"ls")
# os.system(f"python NeRF/nerf_triplane/wav2vec.py --wav {self.opt.aud} --save_feats")
aud_features = np.load(opt.aud.replace('.wav', '_eo.npy'))
elif self.opt.asr_model == 'deepspeech':
os.system(f"python NeRF/data_utils/deepspeech_features/extract_ds_features.py --input {self.opt.aud}")
aud_features = np.load(opt.aud.replace('.wav', '.npy'))
elif self.opt.asr_model == 'ave':
from .network import AudioEncoder
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AudioEncoder().to(device).eval()
ckpt = torch.load('./checkpoints/audio_visual_encoder.pth')
model.load_state_dict({f'audio_encoder.{k}': v for k, v in ckpt.items()})
dataset = AudDataset(self.opt.aud)
data_loader = DataLoader(dataset, batch_size=64, shuffle=False)
outputs = []
for mel in data_loader:
mel = mel.to(device)
with torch.no_grad():
out = model(mel)
outputs.append(out)
outputs = torch.cat(outputs, dim=0).cpu()
first_frame, last_frame = outputs[:1], outputs[-1:]
aud_features = torch.cat([first_frame.repeat(2, 1), outputs, last_frame.repeat(2, 1)], dim=0).numpy()
else:
try:
aud_features = np.load(self.opt.aud)
except:
print(f'[ERROR] If do not use Audio Visual Encoder, replace it with the npy file path')
else:
raise NotImplementedError
if self.opt.asr_model == 'ave':
aud_features = torch.from_numpy(aud_features).unsqueeze(0)
# support both [N, 16] labels and [N, 16, K] logits
if len(aud_features.shape) == 3:
aud_features = aud_features.float().permute(1, 0, 2) # [N, 16, 29] --> [N, 29, 16]
if self.opt.emb:
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
aud_features = aud_features.argmax(1) # [N, 16]
else:
assert self.opt.emb, "aud only provide labels, must use --emb"
aud_features = aud_features.long()
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')
else:
aud_features = torch.from_numpy(aud_features)
# support both [N, 16] labels and [N, 16, K] logits
if len(aud_features.shape) == 3:
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]
if self.opt.emb:
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
aud_features = aud_features.argmax(1) # [N, 16]
else:
assert self.opt.emb, "aud only provide labels, must use --emb"
aud_features = aud_features.long()
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')
self.poses = []
self.auds = []
self.eye_area = []
for f in tqdm.tqdm(frames, desc=f'Loading data'):
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
self.poses.append(pose)
# find the corresponding audio to the image frame
if not self.opt.asr and self.opt.aud == '':
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
self.auds.append(aud)
if self.opt.exp_eye:
if 'eye_ratio' in f:
area = f['eye_ratio']
else:
area = 0.25 # default value for opened eye
self.eye_area.append(area)
# load pre-extracted background image (should be the same size as training image...)
if self.opt.bg_img == 'white': # special
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
elif self.opt.bg_img == 'black': # special
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
else: # load from file
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]
self.bg_img = bg_img
self.poses = np.stack(self.poses, axis=0)
# smooth camera path...
if self.opt.smooth_path:
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
self.poses = torch.from_numpy(self.poses) # [N, 4, 4]
if self.opt.asr:
# live streaming, no pre-calculated auds
self.auds = None
else:
# auds corresponding to images
if self.opt.aud == '':
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
# auds is novel, may have a different length with images
else:
self.auds = aud_features
self.bg_img = torch.from_numpy(self.bg_img)
if self.opt.exp_eye:
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')
if self.opt.smooth_eye:
# naive 5 window average
ori_eye = self.eye_area.copy()
for i in range(ori_eye.shape[0]):
start = max(0, i - 1)
end = min(ori_eye.shape[0], i + 2)
self.eye_area[i] = ori_eye[start:end].mean()
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]
# always preload
self.poses = self.poses.to(self.device)
if self.auds is not None:
self.auds = self.auds.to(self.device)
self.bg_img = self.bg_img.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = self.eye_area.to(self.device)
# load intrinsics
fl_x = fl_y = transform['focal_len']
cx = (transform['cx'] / downscale)
cy = (transform['cy'] / downscale)
self.intrinsics = np.array([fl_x, fl_y, cx, cy])
# directly build the coordinate meshgrid in [-1, 1]^2
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]
def mirror_index(self, index):
size = self.poses.shape[0]
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def collate(self, index):
B = len(index) # a list of length 1
# assert B == 1
results = {}
# audio use the original index
if self.auds is not None:
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
results['auds'] = auds
# head pose and bg image may mirror (replay --> <-- --> <--).
index[0] = self.mirror_index(index[0])
poses = self.poses[index].to(self.device) # [B, 4, 4]
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)
results['index'] = index # for ind. code
results['H'] = self.H
results['W'] = self.W
results['rays_o'] = rays['rays_o']
results['rays_d'] = rays['rays_d']
if self.opt.exp_eye:
results['eye'] = self.eye_area[index].to(self.device) # [1]
else:
results['eye'] = None
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
results['bg_color'] = bg_img
bg_coords = self.bg_coords # [1, N, 2]
results['bg_coords'] = bg_coords
# results['poses'] = convert_poses(poses) # [B, 6]
# results['poses_matrix'] = poses # [B, 4, 4]
results['poses'] = poses # [B, 4, 4]
return results
def dataloader(self):
# test with novel auds, then use its length
if self.auds is not None:
size = self.auds.shape[0]
# live stream test, use 2 * len(poses), so it naturally mirrors.
else:
size = 2 * self.poses.shape[0]
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=False, num_workers=0)
loader._data = self # an ugly fix... we need poses in trainer.
# do evaluate if has gt images and use self-driven setting
loader.has_gt = False
return loader
class NeRFDataset:
def __init__(self, opt, device, type='train', downscale=1):
super().__init__()
self.opt = opt
self.device = device
self.type = type # train, val, test
self.downscale = downscale
self.root_path = opt.path
self.preload = opt.preload # 0 = disk, 1 = cpu, 2 = gpu
self.scale = opt.scale # camera radius scale to make sure camera are inside the bounding box.
self.offset = opt.offset # camera offset
self.bound = opt.bound # bounding box half length, also used as the radius to random sample poses.
self.fp16 = opt.fp16
self.start_index = opt.data_range[0]
self.end_index = opt.data_range[1]
self.training = self.type in ['train', 'all', 'trainval']
self.num_rays = self.opt.num_rays if self.training else -1
# load nerf-compatible format data.
# load all splits (train/valid/test)
if type == 'all':
transform_paths = glob.glob(os.path.join(self.root_path, '*.json'))
transform = None
for transform_path in transform_paths:
with open(transform_path, 'r') as f:
tmp_transform = json.load(f)
if transform is None:
transform = tmp_transform
else:
transform['frames'].extend(tmp_transform['frames'])
# load train and val split
elif type == 'trainval':
with open(os.path.join(self.root_path, f'transforms_train.json'), 'r') as f:
transform = json.load(f)
with open(os.path.join(self.root_path, f'transforms_val.json'), 'r') as f:
transform_val = json.load(f)
transform['frames'].extend(transform_val['frames'])
# only load one specified split
else:
# no test, use val as test
_split = 'val' if type == 'test' else type
with open(os.path.join(self.root_path, f'transforms_{_split}.json'), 'r') as f:
transform = json.load(f)
# load image size
if 'h' in transform and 'w' in transform:
self.H = int(transform['h']) // downscale
self.W = int(transform['w']) // downscale
else:
self.H = int(transform['cy']) * 2 // downscale
self.W = int(transform['cx']) * 2 // downscale
# read images
frames = transform["frames"]
# use a slice of the dataset
if self.end_index == -1: # abuse...
self.end_index = len(frames)
frames = frames[self.start_index:self.end_index]
# use a subset of dataset.
if type == 'train':
if self.opt.part:
frames = frames[::10] # 1/10 frames
elif self.opt.part2:
frames = frames[:375] # first 15s
elif type == 'val':
frames = frames[:100] # first 100 frames for val
print(f'[INFO] load {len(frames)} {type} frames.')
# only load pre-calculated aud features when not live-streaming
if not self.opt.asr:
# empty means the default self-driven extracted features.
if self.opt.aud == '':
if 'esperanto' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_eo.npy'))
elif 'deepspeech' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_ds.npy'))
# elif 'hubert_cn' in self.opt.asr_model:
# aud_features = np.load(os.path.join(self.root_path, 'aud_hu_cn.npy'))
elif 'hubert' in self.opt.asr_model:
aud_features = np.load(os.path.join(self.root_path, 'aud_hu.npy'))
else:
aud_features = np.load(os.path.join(self.root_path, 'aud.npy'))
# cross-driven extracted features.
else:
aud_features = np.load(self.opt.aud)
aud_features = torch.from_numpy(aud_features)
# support both [N, 16] labels and [N, 16, K] logits
if len(aud_features.shape) == 3:
aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16]
if self.opt.emb:
print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode')
aud_features = aud_features.argmax(1) # [N, 16]
else:
assert self.opt.emb, "aud only provide labels, must use --emb"
aud_features = aud_features.long()
print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}')
# load action units
import pandas as pd
au_blink_info=pd.read_csv(os.path.join(self.root_path, 'au.csv'))
au_blink = au_blink_info[' AU45_r'].values
self.torso_img = []
self.images = []
self.poses = []
self.exps = []
self.auds = []
self.face_rect = []
self.lhalf_rect = []
self.lips_rect = []
self.eye_area = []
self.eye_rect = []
for f in tqdm.tqdm(frames, desc=f'Loading {type} data'):
f_path = os.path.join(self.root_path, 'gt_imgs', str(f['img_id']) + '.jpg')
if not os.path.exists(f_path):
print('[WARN]', f_path, 'NOT FOUND!')
continue
pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4]
pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset)
self.poses.append(pose)
if self.preload > 0:
image = cv2.imread(f_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.astype(np.float32) / 255 # [H, W, 3/4]
self.images.append(image)
else:
self.images.append(f_path)
# load frame-wise bg
torso_img_path = os.path.join(self.root_path, 'torso_imgs', str(f['img_id']) + '.png')
if self.preload > 0:
torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4]
torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA)
torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4]
self.torso_img.append(torso_img)
else:
self.torso_img.append(torso_img_path)
# find the corresponding audio to the image frame
if not self.opt.asr and self.opt.aud == '':
aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame...
self.auds.append(aud)
# load lms and extract face
lms = np.loadtxt(os.path.join(self.root_path, 'ori_imgs', str(f['img_id']) + '.lms')) # [68, 2]
lh_xmin, lh_xmax = int(lms[31:36, 1].min()), int(lms[:, 1].max()) # actually lower half area
xmin, xmax = int(lms[:, 1].min()), int(lms[:, 1].max())
ymin, ymax = int(lms[:, 0].min()), int(lms[:, 0].max())
self.face_rect.append([xmin, xmax, ymin, ymax])
self.lhalf_rect.append([lh_xmin, lh_xmax, ymin, ymax])
if self.opt.exp_eye:
# eyes_left = slice(36, 42)
# eyes_right = slice(42, 48)
# area_left = polygon_area(lms[eyes_left, 0], lms[eyes_left, 1])
# area_right = polygon_area(lms[eyes_right, 0], lms[eyes_right, 1])
# # area percentage of two eyes of the whole image...
# area = (area_left + area_right) / (self.H * self.W) * 100
# action units blink AU45
area = au_blink[f['img_id']]
area = np.clip(area, 0, 2) / 2
# area = area + np.random.rand() / 10
self.eye_area.append(area)
xmin, xmax = int(lms[36:48, 1].min()), int(lms[36:48, 1].max())
ymin, ymax = int(lms[36:48, 0].min()), int(lms[36:48, 0].max())
self.eye_rect.append([xmin, xmax, ymin, ymax])
if self.opt.finetune_lips:
lips = slice(48, 60)
xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max())
ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max())
# padding to H == W
cx = (xmin + xmax) // 2
cy = (ymin + ymax) // 2
l = max(xmax - xmin, ymax - ymin) // 2
xmin = max(0, cx - l)
xmax = min(self.H, cx + l)
ymin = max(0, cy - l)
ymax = min(self.W, cy + l)
self.lips_rect.append([xmin, xmax, ymin, ymax])
# load pre-extracted background image (should be the same size as training image...)
if self.opt.bg_img == 'white': # special
bg_img = np.ones((self.H, self.W, 3), dtype=np.float32)
elif self.opt.bg_img == 'black': # special
bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32)
else: # load from file
# default bg
if self.opt.bg_img == '':
self.opt.bg_img = os.path.join(self.root_path, 'bc.jpg')
bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3]
if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W:
bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA)
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB)
bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4]
self.bg_img = bg_img
self.poses = np.stack(self.poses, axis=0)
# smooth camera path...
if self.opt.smooth_path:
self.poses = smooth_camera_path(self.poses, self.opt.smooth_path_window)
self.poses = torch.from_numpy(self.poses) # [N, 4, 4]
if self.preload > 0:
self.images = torch.from_numpy(np.stack(self.images, axis=0)) # [N, H, W, C]
self.torso_img = torch.from_numpy(np.stack(self.torso_img, axis=0)) # [N, H, W, C]
else:
self.images = np.array(self.images)
self.torso_img = np.array(self.torso_img)
if self.opt.asr:
# live streaming, no pre-calculated auds
self.auds = None
else:
# auds corresponding to images
if self.opt.aud == '':
self.auds = torch.stack(self.auds, dim=0) # [N, 32, 16]
# auds is novel, may have a different length with images
else:
self.auds = aud_features
self.bg_img = torch.from_numpy(self.bg_img)
if self.opt.exp_eye:
self.eye_area = np.array(self.eye_area, dtype=np.float32) # [N]
print(f'[INFO] eye_area: {self.eye_area.min()} - {self.eye_area.max()}')
if self.opt.smooth_eye:
# naive 5 window average
ori_eye = self.eye_area.copy()
for i in range(ori_eye.shape[0]):
start = max(0, i - 1)
end = min(ori_eye.shape[0], i + 2)
self.eye_area[i] = ori_eye[start:end].mean()
self.eye_area = torch.from_numpy(self.eye_area).view(-1, 1) # [N, 1]
# calculate mean radius of all camera poses
self.radius = self.poses[:, :3, 3].norm(dim=-1).mean(0).item()
#print(f'[INFO] dataset camera poses: radius = {self.radius:.4f}, bound = {self.bound}')
# [debug] uncomment to view all training poses.
# visualize_poses(self.poses.numpy())
# [debug] uncomment to view examples of randomly generated poses.
# visualize_poses(rand_poses(100, self.device, radius=self.radius).cpu().numpy())
if self.preload > 1:
self.poses = self.poses.to(self.device)
if self.auds is not None:
self.auds = self.auds.to(self.device)
self.bg_img = self.bg_img.to(torch.half).to(self.device)
self.torso_img = self.torso_img.to(torch.half).to(self.device)
self.images = self.images.to(torch.half).to(self.device)
if self.opt.exp_eye:
self.eye_area = self.eye_area.to(self.device)
# load intrinsics
if 'focal_len' in transform:
fl_x = fl_y = transform['focal_len']
elif 'fl_x' in transform or 'fl_y' in transform:
fl_x = (transform['fl_x'] if 'fl_x' in transform else transform['fl_y']) / downscale
fl_y = (transform['fl_y'] if 'fl_y' in transform else transform['fl_x']) / downscale
elif 'camera_angle_x' in transform or 'camera_angle_y' in transform:
# blender, assert in radians. already downscaled since we use H/W
fl_x = self.W / (2 * np.tan(transform['camera_angle_x'] / 2)) if 'camera_angle_x' in transform else None
fl_y = self.H / (2 * np.tan(transform['camera_angle_y'] / 2)) if 'camera_angle_y' in transform else None
if fl_x is None: fl_x = fl_y
if fl_y is None: fl_y = fl_x
else:
raise RuntimeError('Failed to load focal length, please check the transforms.json!')
cx = (transform['cx'] / downscale) if 'cx' in transform else (self.W / 2)
cy = (transform['cy'] / downscale) if 'cy' in transform else (self.H / 2)
self.intrinsics = np.array([fl_x, fl_y, cx, cy])
# directly build the coordinate meshgrid in [-1, 1]^2
self.bg_coords = get_bg_coords(self.H, self.W, self.device) # [1, H*W, 2] in [-1, 1]
def mirror_index(self, index):
size = self.poses.shape[0]
turn = index // size
res = index % size
if turn % 2 == 0:
return res
else:
return size - res - 1
def collate(self, index):
B = len(index) # a list of length 1
# assert B == 1
results = {}
# audio use the original index
if self.auds is not None:
auds = get_audio_features(self.auds, self.opt.att, index[0]).to(self.device)
results['auds'] = auds
# head pose and bg image may mirror (replay --> <-- --> <--).
index[0] = self.mirror_index(index[0])
poses = self.poses[index].to(self.device) # [B, 4, 4]
if self.training and self.opt.finetune_lips:
rect = self.lips_rect[index[0]]
results['rect'] = rect
rays = get_rays(poses, self.intrinsics, self.H, self.W, -1, rect=rect)
else:
rays = get_rays(poses, self.intrinsics, self.H, self.W, self.num_rays, self.opt.patch_size)
results['index'] = index # for ind. code
results['H'] = self.H
results['W'] = self.W
results['rays_o'] = rays['rays_o']
results['rays_d'] = rays['rays_d']
# get a mask for rays inside rect_face
if self.training:
xmin, xmax, ymin, ymax = self.face_rect[index[0]]
face_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['face_mask'] = face_mask
xmin, xmax, ymin, ymax = self.lhalf_rect[index[0]]
lhalf_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['lhalf_mask'] = lhalf_mask
if self.opt.exp_eye:
results['eye'] = self.eye_area[index].to(self.device) # [1]
if self.training:
results['eye'] += (np.random.rand()-0.5) / 10
xmin, xmax, ymin, ymax = self.eye_rect[index[0]]
eye_mask = (rays['j'] >= xmin) & (rays['j'] < xmax) & (rays['i'] >= ymin) & (rays['i'] < ymax) # [B, N]
results['eye_mask'] = eye_mask
else:
results['eye'] = None
# load bg
bg_torso_img = self.torso_img[index]
if self.preload == 0: # on the fly loading
bg_torso_img = cv2.imread(bg_torso_img[0], cv2.IMREAD_UNCHANGED) # [H, W, 4]
bg_torso_img = cv2.cvtColor(bg_torso_img, cv2.COLOR_BGRA2RGBA)
bg_torso_img = bg_torso_img.astype(np.float32) / 255 # [H, W, 3/4]
bg_torso_img = torch.from_numpy(bg_torso_img).unsqueeze(0)
bg_torso_img = bg_torso_img[..., :3] * bg_torso_img[..., 3:] + self.bg_img * (1 - bg_torso_img[..., 3:])
bg_torso_img = bg_torso_img.view(B, -1, 3).to(self.device)
if not self.opt.torso:
bg_img = bg_torso_img
else:
bg_img = self.bg_img.view(1, -1, 3).repeat(B, 1, 1).to(self.device)
if self.training:
bg_img = torch.gather(bg_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]
results['bg_color'] = bg_img
if self.opt.torso and self.training:
bg_torso_img = torch.gather(bg_torso_img, 1, torch.stack(3 * [rays['inds']], -1)) # [B, N, 3]
results['bg_torso_color'] = bg_torso_img
images = self.images[index] # [B, H, W, 3/4]
if self.preload == 0:
images = cv2.imread(images[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
images = cv2.cvtColor(images, cv2.COLOR_BGR2RGB)
images = images.astype(np.float32) / 255 # [H, W, 3]
images = torch.from_numpy(images).unsqueeze(0)
images = images.to(self.device)
if self.training:
C = images.shape[-1]
images = torch.gather(images.view(B, -1, C), 1, torch.stack(C * [rays['inds']], -1)) # [B, N, 3/4]
results['images'] = images
if self.training:
bg_coords = torch.gather(self.bg_coords, 1, torch.stack(2 * [rays['inds']], -1)) # [1, N, 2]
else:
bg_coords = self.bg_coords # [1, N, 2]
results['bg_coords'] = bg_coords
# results['poses'] = convert_poses(poses) # [B, 6]
# results['poses_matrix'] = poses # [B, 4, 4]
results['poses'] = poses # [B, 4, 4]
return results
def dataloader(self):
if self.training:
# training len(poses) == len(auds)
size = self.poses.shape[0]
else:
# test with novel auds, then use its length
if self.auds is not None:
size = self.auds.shape[0]
# live stream test, use 2 * len(poses), so it naturally mirrors.
else:
size = 2 * self.poses.shape[0]
loader = DataLoader(list(range(size)), batch_size=1, collate_fn=self.collate, shuffle=self.training, num_workers=0)
loader._data = self # an ugly fix... we need poses in trainer.
# do evaluate if has gt images and use self-driven setting
loader.has_gt = (self.opt.aud == '')
return loader