linly / NeRF /nerf_triplane /network.py
David Victor
init
bc3753a
raw
history blame
16.6 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from encoding import get_encoder
from .renderer import NeRFRenderer
class Conv2d(nn.Module):
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, leakyReLU=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.conv_block = nn.Sequential(
nn.Conv2d(cin, cout, kernel_size, stride, padding),
nn.BatchNorm2d(cout)
)
if leakyReLU:
self.act = nn.LeakyReLU(0.02)
else:
self.act = nn.ReLU()
self.residual = residual
def forward(self, x):
out = self.conv_block(x)
if self.residual:
out += x
return self.act(out)
class AudioEncoder(nn.Module):
def __init__(self):
super(AudioEncoder, self).__init__()
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0), )
def forward(self, x):
out = self.audio_encoder(x)
out = out.squeeze(2).squeeze(2)
return out
# Audio feature extractor
class AudioAttNet(nn.Module):
def __init__(self, dim_aud=64, seq_len=8):
super(AudioAttNet, self).__init__()
self.seq_len = seq_len
self.dim_aud = dim_aud
self.attentionConvNet = nn.Sequential( # b x subspace_dim x seq_len
nn.Conv1d(self.dim_aud, 16, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(0.02, True),
nn.Conv1d(16, 8, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(0.02, True),
nn.Conv1d(8, 4, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(0.02, True),
nn.Conv1d(4, 2, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(0.02, True),
nn.Conv1d(2, 1, kernel_size=3, stride=1, padding=1, bias=True),
nn.LeakyReLU(0.02, True)
)
self.attentionNet = nn.Sequential(
nn.Linear(in_features=self.seq_len, out_features=self.seq_len, bias=True),
nn.Softmax(dim=1)
)
def forward(self, x):
# x: [1, seq_len, dim_aud]
y = x.permute(0, 2, 1) # [1, dim_aud, seq_len]
y = self.attentionConvNet(y)
y = self.attentionNet(y.view(1, self.seq_len)).view(1, self.seq_len, 1)
return torch.sum(y * x, dim=1) # [1, dim_aud]
# Audio feature extractor
class AudioNet(nn.Module):
def __init__(self, dim_in=29, dim_aud=64, win_size=16):
super(AudioNet, self).__init__()
self.win_size = win_size
self.dim_aud = dim_aud
self.encoder_conv = nn.Sequential( # n x 29 x 16
nn.Conv1d(dim_in, 32, kernel_size=3, stride=2, padding=1, bias=True), # n x 32 x 8
nn.LeakyReLU(0.02, True),
nn.Conv1d(32, 32, kernel_size=3, stride=2, padding=1, bias=True), # n x 32 x 4
nn.LeakyReLU(0.02, True),
nn.Conv1d(32, 64, kernel_size=3, stride=2, padding=1, bias=True), # n x 64 x 2
nn.LeakyReLU(0.02, True),
nn.Conv1d(64, 64, kernel_size=3, stride=2, padding=1, bias=True), # n x 64 x 1
nn.LeakyReLU(0.02, True),
)
self.encoder_fc1 = nn.Sequential(
nn.Linear(64, 64),
nn.LeakyReLU(0.02, True),
nn.Linear(64, dim_aud),
)
def forward(self, x):
half_w = int(self.win_size/2)
x = x[:, :, 8-half_w:8+half_w]
x = self.encoder_conv(x).squeeze(-1)
x = self.encoder_fc1(x)
return x
class MLP(nn.Module):
def __init__(self, dim_in, dim_out, dim_hidden, num_layers):
super().__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.dim_hidden = dim_hidden
self.num_layers = num_layers
net = []
for l in range(num_layers):
net.append(nn.Linear(self.dim_in if l == 0 else self.dim_hidden, self.dim_out if l == num_layers - 1 else self.dim_hidden, bias=False))
self.net = nn.ModuleList(net)
def forward(self, x):
for l in range(self.num_layers):
x = self.net[l](x)
if l != self.num_layers - 1:
x = F.relu(x, inplace=True)
# x = F.dropout(x, p=0.1, training=self.training)
return x
# Audio feature extractor
class AudioNet_ave(nn.Module):
def __init__(self, dim_in=29, dim_aud=64, win_size=16):
super(AudioNet_ave, self).__init__()
self.win_size = win_size
self.dim_aud = dim_aud
self.encoder_fc1 = nn.Sequential(
nn.Linear(512, 256),
nn.LeakyReLU(0.02, True),
nn.Linear(256, 128),
nn.LeakyReLU(0.02, True),
nn.Linear(128, dim_aud),
)
def forward(self, x):
# half_w = int(self.win_size/2)
# x = x[:, :, 8-half_w:8+half_w]
# x = self.encoder_conv(x).squeeze(-1)
x = self.encoder_fc1(x).permute(1,0,2).squeeze(0)
return x
class NeRFNetwork(NeRFRenderer):
def __init__(self,
opt,
audio_dim = 32,
# torso net (hard coded for now)
):
super().__init__(opt)
# audio embedding
self.emb = self.opt.emb
if 'esperanto' in self.opt.asr_model:
self.audio_in_dim = 44
elif 'deepspeech' in self.opt.asr_model:
self.audio_in_dim = 29
elif 'hubert' in self.opt.asr_model:
self.audio_in_dim = 1024
else:
self.audio_in_dim = 32
if self.emb:
self.embedding = nn.Embedding(self.audio_in_dim, self.audio_in_dim)
# audio network
self.audio_dim = audio_dim
# self.audio_net = AudioNet(self.audio_in_dim, self.audio_dim)
# audio network
self.audio_dim = audio_dim
if self.opt.asr_model == 'ave':
self.audio_net = AudioNet_ave(self.audio_in_dim, self.audio_dim)
else:
self.audio_net = AudioNet(self.audio_in_dim, self.audio_dim)
self.att = self.opt.att
if self.att > 0:
self.audio_att_net = AudioAttNet(self.audio_dim)
# DYNAMIC PART
self.num_levels = 12
self.level_dim = 1
self.encoder_xy, self.in_dim_xy = get_encoder('hashgrid', input_dim=2, num_levels=self.num_levels, level_dim=self.level_dim, base_resolution=64, log2_hashmap_size=14, desired_resolution=512 * self.bound)
self.encoder_yz, self.in_dim_yz = get_encoder('hashgrid', input_dim=2, num_levels=self.num_levels, level_dim=self.level_dim, base_resolution=64, log2_hashmap_size=14, desired_resolution=512 * self.bound)
self.encoder_xz, self.in_dim_xz = get_encoder('hashgrid', input_dim=2, num_levels=self.num_levels, level_dim=self.level_dim, base_resolution=64, log2_hashmap_size=14, desired_resolution=512 * self.bound)
self.in_dim = self.in_dim_xy + self.in_dim_yz + self.in_dim_xz
## sigma network
self.num_layers = 3
self.hidden_dim = 64
self.geo_feat_dim = 64
self.eye_att_net = MLP(self.in_dim, 1, 16, 2)
self.eye_dim = 1 if self.exp_eye else 0
self.sigma_net = MLP(self.in_dim + self.audio_dim + self.eye_dim, 1 + self.geo_feat_dim, self.hidden_dim, self.num_layers)
## color network
self.num_layers_color = 2
self.hidden_dim_color = 64
self.encoder_dir, self.in_dim_dir = get_encoder('spherical_harmonics')
self.color_net = MLP(self.in_dim_dir + self.geo_feat_dim + self.individual_dim, 3, self.hidden_dim_color, self.num_layers_color)
self.unc_net = MLP(self.in_dim, 1, 32, 2)
self.aud_ch_att_net = MLP(self.in_dim, self.audio_dim, 64, 2)
self.testing = False
if self.torso:
# torso deform network
self.register_parameter('anchor_points',
nn.Parameter(torch.tensor([[0.01, 0.01, 0.1, 1], [-0.1, -0.1, 0.1, 1], [0.1, -0.1, 0.1, 1]])))
self.torso_deform_encoder, self.torso_deform_in_dim = get_encoder('frequency', input_dim=2, multires=8)
# self.torso_deform_encoder, self.torso_deform_in_dim = get_encoder('tiledgrid', input_dim=2, num_levels=16, level_dim=1, base_resolution=16, log2_hashmap_size=16, desired_resolution=512)
self.anchor_encoder, self.anchor_in_dim = get_encoder('frequency', input_dim=6, multires=3)
self.torso_deform_net = MLP(self.torso_deform_in_dim + self.anchor_in_dim + self.individual_dim_torso, 2, 32, 3)
# torso color network
self.torso_encoder, self.torso_in_dim = get_encoder('tiledgrid', input_dim=2, num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=16, desired_resolution=2048)
self.torso_net = MLP(self.torso_in_dim + self.torso_deform_in_dim + self.anchor_in_dim + self.individual_dim_torso, 4, 32, 3)
def forward_torso(self, x, poses, c=None):
# x: [N, 2] in [-1, 1]
# head poses: [1, 4, 4]
# c: [1, ind_dim], individual code
# test: shrink x
x = x * self.opt.torso_shrink
# deformation-based
wrapped_anchor = self.anchor_points[None, ...] @ poses.permute(0, 2, 1).inverse()
wrapped_anchor = (wrapped_anchor[:, :, :2] / wrapped_anchor[:, :, 3, None] / wrapped_anchor[:, :, 2, None]).view(1, -1)
# print(wrapped_anchor)
# enc_pose = self.pose_encoder(poses)
enc_anchor = self.anchor_encoder(wrapped_anchor)
enc_x = self.torso_deform_encoder(x)
if c is not None:
h = torch.cat([enc_x, enc_anchor.repeat(x.shape[0], 1), c.repeat(x.shape[0], 1)], dim=-1)
else:
h = torch.cat([enc_x, enc_anchor.repeat(x.shape[0], 1)], dim=-1)
dx = self.torso_deform_net(h)
x = (x + dx).clamp(-1, 1)
x = self.torso_encoder(x, bound=1)
# h = torch.cat([x, h, enc_a.repeat(x.shape[0], 1)], dim=-1)
h = torch.cat([x, h], dim=-1)
h = self.torso_net(h)
alpha = torch.sigmoid(h[..., :1])*(1 + 2*0.001) - 0.001
color = torch.sigmoid(h[..., 1:])*(1 + 2*0.001) - 0.001
return alpha, color, dx
@staticmethod
@torch.jit.script
def split_xyz(x):
xy, yz, xz = x[:, :-1], x[:, 1:], torch.cat([x[:,:1], x[:,-1:]], dim=-1)
return xy, yz, xz
def encode_x(self, xyz, bound):
# x: [N, 3], in [-bound, bound]
N, M = xyz.shape
xy, yz, xz = self.split_xyz(xyz)
feat_xy = self.encoder_xy(xy, bound=bound)
feat_yz = self.encoder_yz(yz, bound=bound)
feat_xz = self.encoder_xz(xz, bound=bound)
return torch.cat([feat_xy, feat_yz, feat_xz], dim=-1)
def encode_audio(self, a):
# a: [1, 29, 16] or [8, 29, 16], audio features from deepspeech
# if emb, a should be: [1, 16] or [8, 16]
# fix audio traininig
if a is None: return None
if self.emb:
a = self.embedding(a).transpose(-1, -2).contiguous() # [1/8, 29, 16]
enc_a = self.audio_net(a) # [1/8, 64]
if self.att > 0:
enc_a = self.audio_att_net(enc_a.unsqueeze(0)) # [1, 64]
return enc_a
def predict_uncertainty(self, unc_inp):
if self.testing or not self.opt.unc_loss:
unc = torch.zeros_like(unc_inp)
else:
unc = self.unc_net(unc_inp.detach())
return unc
def forward(self, x, d, enc_a, c, e=None):
# x: [N, 3], in [-bound, bound]
# d: [N, 3], nomalized in [-1, 1]
# enc_a: [1, aud_dim]
# c: [1, ind_dim], individual code
# e: [1, 1], eye feature
enc_x = self.encode_x(x, bound=self.bound)
sigma_result = self.density(x, enc_a, e, enc_x)
sigma = sigma_result['sigma']
geo_feat = sigma_result['geo_feat']
aud_ch_att = sigma_result['ambient_aud']
eye_att = sigma_result['ambient_eye']
# color
enc_d = self.encoder_dir(d)
if c is not None:
h = torch.cat([enc_d, geo_feat, c.repeat(x.shape[0], 1)], dim=-1)
else:
h = torch.cat([enc_d, geo_feat], dim=-1)
h_color = self.color_net(h)
color = torch.sigmoid(h_color)*(1 + 2*0.001) - 0.001
uncertainty = self.predict_uncertainty(enc_x)
uncertainty = torch.log(1 + torch.exp(uncertainty))
return sigma, color, aud_ch_att, eye_att, uncertainty[..., None]
def density(self, x, enc_a, e=None, enc_x=None):
# x: [N, 3], in [-bound, bound]
if enc_x is None:
enc_x = self.encode_x(x, bound=self.bound)
enc_a = enc_a.repeat(enc_x.shape[0], 1)
aud_ch_att = self.aud_ch_att_net(enc_x)
enc_w = enc_a * aud_ch_att
if e is not None:
# e = self.encoder_eye(e)
eye_att = torch.sigmoid(self.eye_att_net(enc_x))
e = e * eye_att
# e = e.repeat(enc_x.shape[0], 1)
h = torch.cat([enc_x, enc_w, e], dim=-1)
else:
h = torch.cat([enc_x, enc_w], dim=-1)
h = self.sigma_net(h)
sigma = torch.exp(h[..., 0])
geo_feat = h[..., 1:]
return {
'sigma': sigma,
'geo_feat': geo_feat,
'ambient_aud' : aud_ch_att.norm(dim=-1, keepdim=True),
'ambient_eye' : eye_att,
}
# optimizer utils
def get_params(self, lr, lr_net, wd=0):
# ONLY train torso
if self.torso:
params = [
{'params': self.torso_encoder.parameters(), 'lr': lr},
{'params': self.torso_deform_encoder.parameters(), 'lr': lr, 'weight_decay': wd},
{'params': self.torso_net.parameters(), 'lr': lr_net, 'weight_decay': wd},
{'params': self.torso_deform_net.parameters(), 'lr': lr_net, 'weight_decay': wd},
{'params': self.anchor_points, 'lr': lr_net, 'weight_decay': wd}
]
if self.individual_dim_torso > 0:
params.append({'params': self.individual_codes_torso, 'lr': lr_net, 'weight_decay': wd})
return params
params = [
{'params': self.audio_net.parameters(), 'lr': lr_net, 'weight_decay': wd},
{'params': self.encoder_xy.parameters(), 'lr': lr},
{'params': self.encoder_yz.parameters(), 'lr': lr},
{'params': self.encoder_xz.parameters(), 'lr': lr},
# {'params': self.encoder_xyz.parameters(), 'lr': lr},
{'params': self.sigma_net.parameters(), 'lr': lr_net, 'weight_decay': wd},
{'params': self.color_net.parameters(), 'lr': lr_net, 'weight_decay': wd},
]
if self.att > 0:
params.append({'params': self.audio_att_net.parameters(), 'lr': lr_net * 5, 'weight_decay': 0.0001})
if self.emb:
params.append({'params': self.embedding.parameters(), 'lr': lr})
if self.individual_dim > 0:
params.append({'params': self.individual_codes, 'lr': lr_net, 'weight_decay': wd})
if self.train_camera:
params.append({'params': self.camera_dT, 'lr': 1e-5, 'weight_decay': 0})
params.append({'params': self.camera_dR, 'lr': 1e-5, 'weight_decay': 0})
params.append({'params': self.aud_ch_att_net.parameters(), 'lr': lr_net, 'weight_decay': wd})
params.append({'params': self.unc_net.parameters(), 'lr': lr_net, 'weight_decay': wd})
params.append({'params': self.eye_att_net.parameters(), 'lr': lr_net, 'weight_decay': wd})
return params