Spaces:
Sleeping
Sleeping
''' | |
按中英混合识别 | |
按日英混合识别 | |
多语种启动切分识别语种 | |
全部按中文识别 | |
全部按英文识别 | |
全部按日文识别 | |
''' | |
import os, re, logging | |
import LangSegment | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
import pdb | |
if os.path.exists("./gweight.txt"): | |
with open("./gweight.txt", 'r', encoding="utf-8") as file: | |
gweight_data = file.read() | |
gpt_path = os.environ.get( | |
"gpt_path", gweight_data) | |
else: | |
gpt_path = os.environ.get( | |
"gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
if os.path.exists("./sweight.txt"): | |
with open("./sweight.txt", 'r', encoding="utf-8") as file: | |
sweight_data = file.read() | |
sovits_path = os.environ.get("sovits_path", sweight_data) | |
else: | |
sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth") | |
# gpt_path = os.environ.get( | |
# "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
# ) | |
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base" | |
) | |
bert_path = os.environ.get( | |
"bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) | |
infer_ttswebui = int(infer_ttswebui) | |
is_share = os.environ.get("is_share", "False") | |
is_share = eval(is_share) | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
is_half = eval(os.environ.get("is_half", "True")) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
import librosa, torch | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from time import time as ttime | |
from module.mel_processing import spectrogram_torch | |
from my_utils import load_audio | |
from tools.i18n.i18n import I18nAuto | |
i18n = I18nAuto() | |
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
# 初始化引导音频列表 | |
def init_wav_list(sovits_path): | |
wav_path = "./output/slicer_opt" | |
match = re.search(r'([a-zA-Z]+)_e\d+_s\d+\.pth',sovits_path) | |
if match: | |
result = match.group(1) | |
wav_path = f"./logs/{result}/5-wav32k/" | |
res = ["请选择参考音频"] | |
# 遍历目录 | |
for file_path in os.listdir(wav_path): | |
# 检查当前file_path是否为文件 | |
if os.path.isfile(os.path.join(wav_path, file_path)): | |
# 将文件名添加到列表中 | |
res.append(file_path) | |
# print(res) | |
return res | |
reference_wavs = init_wav_list(sovits_path) | |
# 切换参考音频 | |
def change_wav(audio_name): | |
wav_path = f"./output/slicer_opt/{audio_name}" | |
match = re.search(r'([a-zA-Z]+)_e\d+_s\d+\.pth',sovits_path) | |
if match: | |
result = match.group(1) | |
wav_path = f"./logs/{result}/5-wav32k/{audio_name}" | |
return wav_path | |
def change_sovits_weights(sovits_path): | |
global vq_model, hps | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
with open("./sweight.txt", "w", encoding="utf-8") as f: | |
f.write(sovits_path) | |
return init_wav_list(sovits_path) | |
change_sovits_weights(sovits_path) | |
def change_gpt_weights(gpt_path): | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) | |
change_gpt_weights(gpt_path) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language = { | |
i18n("中文"): "all_zh",#全部按中文识别 | |
i18n("英文"): "en",#全部按英文识别#######不变 | |
i18n("日文"): "all_ja",#全部按日文识别 | |
i18n("中英混合"): "zh",#按中英混合识别####不变 | |
i18n("日英混合"): "ja",#按日英混合识别####不变 | |
i18n("多语种混合"): "auto",#多语种启动切分识别语种 | |
} | |
def splite_en_inf(sentence, language): | |
pattern = re.compile(r'[a-zA-Z ]+') | |
textlist = [] | |
langlist = [] | |
pos = 0 | |
for match in pattern.finditer(sentence): | |
start, end = match.span() | |
if start > pos: | |
textlist.append(sentence[pos:start]) | |
langlist.append(language) | |
textlist.append(sentence[start:end]) | |
langlist.append("en") | |
pos = end | |
if pos < len(sentence): | |
textlist.append(sentence[pos:]) | |
langlist.append(language) | |
# Merge punctuation into previous word | |
for i in range(len(textlist)-1, 0, -1): | |
if re.match(r'^[\W_]+$', textlist[i]): | |
textlist[i-1] += textlist[i] | |
del textlist[i] | |
del langlist[i] | |
# Merge consecutive words with the same language tag | |
i = 0 | |
while i < len(langlist) - 1: | |
if langlist[i] == langlist[i+1]: | |
textlist[i] += textlist[i+1] | |
del textlist[i+1] | |
del langlist[i+1] | |
else: | |
i += 1 | |
return textlist, langlist | |
def clean_text_inf(text, language): | |
phones, word2ph, norm_text = clean_text(text, language.replace("all_","")) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
dtype=torch.float16 if is_half == True else torch.float32 | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def nonen_clean_text_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
word2ph_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
phones_list.append(phones) | |
if lang == "zh": | |
word2ph_list.append(word2ph) | |
norm_text_list.append(norm_text) | |
print(word2ph_list) | |
phones = sum(phones_list, []) | |
word2ph = sum(word2ph_list, []) | |
norm_text = ' '.join(norm_text_list) | |
return phones, word2ph, norm_text | |
def nonen_get_bert_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
bert_list = [] | |
for i in range(len(textlist)): | |
text = textlist[i] | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(text, lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
return bert | |
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_cleaned_text_fianl(text,language): | |
if language in {"en","all_zh","all_ja"}: | |
phones, word2ph, norm_text = clean_text_inf(text, language) | |
elif language in {"zh", "ja","auto"}: | |
phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
return phones, word2ph, norm_text | |
def get_bert_final(phones, word2ph, norm_text,language,device): | |
if text_language == "en": | |
bert = get_bert_inf(phones, word2ph, norm_text, text_language) | |
elif text_language in {"zh", "ja","auto"}: | |
bert = nonen_get_bert_inf(text, text_language) | |
elif text_language == "all_zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
else: | |
bert = torch.zeros((1024, len(phones))).to(device) | |
return bert | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")): | |
t0 = ttime() | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
text = text.strip("\n") | |
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
print(i18n("实际输入的参考文本:"), prompt_text) | |
print(i18n("实际输入的目标文本:"), text) | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
phones1, word2ph1, norm_text1=get_cleaned_text_fianl(prompt_text, prompt_language) | |
if (how_to_cut == i18n("凑四句一切")): | |
text = cut1(text) | |
elif (how_to_cut == i18n("凑50字一切")): | |
text = cut2(text) | |
elif (how_to_cut == i18n("按中文句号。切")): | |
text = cut3(text) | |
elif (how_to_cut == i18n("按英文句号.切")): | |
text = cut4(text) | |
elif (how_to_cut == i18n("按标点符号切")): | |
text = cut5(text) | |
text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n") | |
print(i18n("实际输入的目标文本(切句后):"), text) | |
texts = text.split("\n") | |
audio_opt = [] | |
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) | |
for text in texts: | |
# 解决输入目标文本的空行导致报错的问题 | |
if (len(text.strip()) == 0): | |
continue | |
if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
print(i18n("实际输入的目标文本(每句):"), text) | |
phones2, word2ph2, norm_text2 = get_cleaned_text_fianl(text, text_language) | |
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) ###试试重建不带上prompt部分 | |
max_audio=np.abs(audio).max()#简单防止16bit爆音 | |
if max_audio>1:audio/=max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
np.int16 | |
) | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
# if not re.search(r'[^\w\s]', inp[-1]): | |
# inp += '。' | |
inp = inp.strip("\n") | |
punds = r'[,.;?!、,。?!;:]' | |
items = re.split(f'({punds})', inp) | |
items = ["".join(group) for group in zip(items[::2], items[1::2])] | |
opt = "\n".join(items) | |
return opt | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split('(\d+)', s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def change_choices(): | |
SoVITS_names, GPT_names = get_weights_names() | |
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} | |
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
SoVITS_weight_root = "SoVITS_weights" | |
GPT_weight_root = "GPT_weights" | |
os.makedirs(SoVITS_weight_root, exist_ok=True) | |
os.makedirs(GPT_weight_root, exist_ok=True) | |
def get_weights_names(): | |
SoVITS_names = [pretrained_sovits_name] | |
for name in os.listdir(SoVITS_weight_root): | |
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) | |
GPT_names = [pretrained_gpt_name] | |
for name in os.listdir(GPT_weight_root): | |
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name)) | |
return SoVITS_names, GPT_names | |
SoVITS_names, GPT_names = get_weights_names() | |
#region 输出音频历史记录相关 | |
output_history =[] | |
history_max_num = 20 | |
def sync_output_history_to_checkbox_audio(): | |
checkbox_result = [] | |
audio_result = [] | |
for item in output_history: | |
label = item['label'] | |
if len(label)>15: | |
label=label[:15]+'...' | |
checkbox_result.append(gr.update(label=label,value=False)) | |
audio_result.append(gr.Audio.update(value=item['value'])) | |
for _ in range(len(audio_result),history_max_num): | |
checkbox_result.append(gr.Checkbox.update(label="",value=False)) | |
audio_result.append(gr.Audio.update(value = None)) | |
return [*checkbox_result,*audio_result] | |
def add_to_history(audio,input_text): | |
if(audio is None or audio[1] is not None): | |
if len(output_history) == history_max_num: | |
output_history.pop() | |
output_history.insert(0,{'value':audio,'label':input_text}) | |
return [*sync_output_history_to_checkbox_audio()] | |
def clear_history(): | |
global output_history | |
output_history = [] | |
checkbox_result = [] | |
audio_result = [] | |
for _ in range(history_max_num): | |
checkbox_result.append(gr.Checkbox.update(label="",value=False)) | |
audio_result.append(gr.Audio.update(value = None)) | |
return [*checkbox_result,*audio_result] | |
def shown_audio_num_change(audio_num): | |
audio_num = int(audio_num) | |
audio_result = [] | |
checkbox_result = [] | |
for _ in range(audio_num): | |
audio_result.append(gr.Audio.update(visible=True)) | |
checkbox_result.append(gr.update(visible=True)) | |
for _ in range(audio_num,history_max_num): | |
audio_result.append(gr.Audio.update(visible=False)) | |
checkbox_result.append(gr.update(visible=False)) | |
return [*checkbox_result,*audio_result] | |
def delete_selected_history(*selected_list): | |
global output_history | |
print(f"!!!!!!!!{selected_list}") | |
for i in reversed(range(len(output_history))): | |
if(selected_list[i]): | |
output_history.pop(i) | |
print(f"!!!!{output_history}") | |
return [*sync_output_history_to_checkbox_audio()] | |
with gr.Blocks(title="GPT-SoVITS WebUI") as app: | |
gr.Markdown( | |
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") | |
) | |
with gr.Group(): | |
gr.Markdown(value=i18n("模型切换")) | |
with gr.Row(): | |
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) | |
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) | |
wavs_dropdown = gr.Dropdown(label=i18n("参考音频列表"), choices=reference_wavs,value="请选择参考音频",interactive=True) | |
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") | |
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) | |
# SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], []) | |
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [wavs_dropdown]) | |
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) | |
gr.Markdown(value=i18n("*请上传并填写参考信息")) | |
with gr.Row(): | |
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") | |
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="") | |
prompt_language = gr.Dropdown( | |
label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文") | |
) | |
wavs_dropdown.change(change_wav,[wavs_dropdown],[inp_ref]) | |
gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。")) | |
with gr.Row(): | |
text = gr.Textbox(label=i18n("需要合成的文本"), value="") | |
text_language = gr.Dropdown( | |
label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") | |
) | |
how_to_cut = gr.Radio( | |
label=i18n("怎么切"), | |
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], | |
value=i18n("凑四句一切"), | |
interactive=True, | |
) | |
inference_button = gr.Button(i18n("合成语音"), variant="primary") | |
output = gr.Audio(label=i18n("输出的语音")) | |
inference_button.click( | |
get_tts_wav, | |
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut], | |
[output], | |
) | |
history_audio = [] | |
history_checkbox = [] | |
with gr.Accordion("生成历史"): | |
with gr.Row(): | |
shown_audio_num = gr.Slider(1,20,history_max_num,step=1,interactive=True,label="记录显示数量") | |
add_history_button = gr.Button("添加当前音频记录",variant="primary") | |
delete_select_history_button = gr.Button("删除选择的记录") | |
clear_history_button = gr.Button("清空记录") | |
index=0 | |
while(index<history_max_num): | |
index+=5 | |
with gr.Row(): | |
for _ in range(5): | |
with gr.Group(): | |
history_checkbox.append(gr.Checkbox(interactive=True,show_label=False,label="")) | |
history_audio.append(gr.Audio(label="")) | |
shown_audio_num.change(shown_audio_num_change,[shown_audio_num],[*history_checkbox,*history_audio]) | |
add_history_button.click(add_to_history,[output,text],[*history_checkbox,*history_audio]) | |
delete_select_history_button.click(delete_selected_history,[*history_checkbox],[*history_checkbox,*history_audio]) | |
clear_history_button.click(clear_history,outputs=[*history_checkbox,*history_audio]) | |
gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。")) | |
with gr.Row(): | |
text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="") | |
button1 = gr.Button(i18n("凑四句一切"), variant="primary") | |
button2 = gr.Button(i18n("凑50字一切"), variant="primary") | |
button3 = gr.Button(i18n("按中文句号。切"), variant="primary") | |
button4 = gr.Button(i18n("按英文句号.切"), variant="primary") | |
button5 = gr.Button(i18n("按标点符号切"), variant="primary") | |
text_opt = gr.Textbox(label=i18n("切分后文本"), value="") | |
button1.click(cut1, [text_inp], [text_opt]) | |
button2.click(cut2, [text_inp], [text_opt]) | |
button3.click(cut3, [text_inp], [text_opt]) | |
button4.click(cut4, [text_inp], [text_opt]) | |
button5.click(cut5, [text_inp], [text_opt]) | |
gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。")) | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=True, | |
share=is_share, | |
server_port=infer_ttswebui, | |
quiet=True, | |
) | |