linly / NeRF /gridencoder /src /gridencoder.cu
David Victor
init
bc3753a
raw
history blame
20.1 kB
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/torch.h>
#include <algorithm>
#include <stdexcept>
#include <stdint.h>
#include <cstdio>
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor")
#define CHECK_IS_INT(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor")
#define CHECK_IS_FLOATING(x) TORCH_CHECK(x.scalar_type() == at::ScalarType::Float || x.scalar_type() == at::ScalarType::Half || x.scalar_type() == at::ScalarType::Double, #x " must be a floating tensor")
// just for compatability of half precision in AT_DISPATCH_FLOATING_TYPES_AND_HALF...
static inline __device__ at::Half atomicAdd(at::Half *address, at::Half val) {
// requires CUDA >= 10 and ARCH >= 70
// this is very slow compared to float or __half2, and never used.
//return atomicAdd(reinterpret_cast<__half*>(address), val);
}
template <typename T>
static inline __host__ __device__ T div_round_up(T val, T divisor) {
return (val + divisor - 1) / divisor;
}
template <uint32_t D>
__device__ uint32_t fast_hash(const uint32_t pos_grid[D]) {
static_assert(D <= 7, "fast_hash can only hash up to 7 dimensions.");
// While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence
// and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional
// coordinates.
constexpr uint32_t primes[7] = { 1, 2654435761, 805459861, 3674653429, 2097192037, 1434869437, 2165219737 };
uint32_t result = 0;
#pragma unroll
for (uint32_t i = 0; i < D; ++i) {
result ^= pos_grid[i] * primes[i];
}
return result;
}
template <uint32_t D, uint32_t C>
__device__ uint32_t get_grid_index(const uint32_t gridtype, const bool align_corners, const uint32_t ch, const uint32_t hashmap_size, const uint32_t resolution, const uint32_t pos_grid[D]) {
uint32_t stride = 1;
uint32_t index = 0;
#pragma unroll
for (uint32_t d = 0; d < D && stride <= hashmap_size; d++) {
index += pos_grid[d] * stride;
stride *= align_corners ? resolution: (resolution + 1);
}
// NOTE: for NeRF, the hash is in fact not necessary. Check https://github.com/NVlabs/instant-ngp/issues/97.
// gridtype: 0 == hash, 1 == tiled
if (gridtype == 0 && stride > hashmap_size) {
index = fast_hash<D>(pos_grid);
}
return (index % hashmap_size) * C + ch;
}
template <typename scalar_t, uint32_t D, uint32_t C>
__global__ void kernel_grid(
const float * __restrict__ inputs,
const scalar_t * __restrict__ grid,
const int * __restrict__ offsets,
scalar_t * __restrict__ outputs,
const uint32_t B, const uint32_t L, const float S, const uint32_t H,
scalar_t * __restrict__ dy_dx,
const uint32_t gridtype,
const bool align_corners
) {
const uint32_t b = blockIdx.x * blockDim.x + threadIdx.x;
if (b >= B) return;
const uint32_t level = blockIdx.y;
// locate
grid += (uint32_t)offsets[level] * C;
inputs += b * D;
outputs += level * B * C + b * C;
// check input range (should be in [0, 1])
bool flag_oob = false;
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if (inputs[d] < 0 || inputs[d] > 1) {
flag_oob = true;
}
}
// if input out of bound, just set output to 0
if (flag_oob) {
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
outputs[ch] = 0;
}
if (dy_dx) {
dy_dx += b * D * L * C + level * D * C; // B L D C
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
dy_dx[d * C + ch] = 0;
}
}
}
return;
}
const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
const float scale = exp2f(level * S) * H - 1.0f;
const uint32_t resolution = (uint32_t)ceil(scale) + 1;
// calculate coordinate
float pos[D];
uint32_t pos_grid[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f);
pos_grid[d] = floorf(pos[d]);
pos[d] -= (float)pos_grid[d];
}
//printf("[b=%d, l=%d] pos=(%f, %f)+(%d, %d)\n", b, level, pos[0], pos[1], pos_grid[0], pos_grid[1]);
// interpolate
scalar_t results[C] = {0}; // temp results in register
#pragma unroll
for (uint32_t idx = 0; idx < (1 << D); idx++) {
float w = 1;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if ((idx & (1 << d)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
uint32_t index = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local);
// writing to register (fast)
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
results[ch] += w * grid[index + ch];
}
//printf("[b=%d, l=%d] int %d, idx %d, w %f, val %f\n", b, level, idx, index, w, grid[index]);
}
// writing to global memory (slow)
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
outputs[ch] = results[ch];
}
// prepare dy_dx
// differentiable (soft) indexing: https://discuss.pytorch.org/t/differentiable-indexing/17647/9
if (dy_dx) {
dy_dx += b * D * L * C + level * D * C; // B L D C
#pragma unroll
for (uint32_t gd = 0; gd < D; gd++) {
scalar_t results_grad[C] = {0};
#pragma unroll
for (uint32_t idx = 0; idx < (1 << (D - 1)); idx++) {
float w = scale;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t nd = 0; nd < D - 1; nd++) {
const uint32_t d = (nd >= gd) ? (nd + 1) : nd;
if ((idx & (1 << nd)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
pos_grid_local[gd] = pos_grid[gd];
uint32_t index_left = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local);
pos_grid_local[gd] = pos_grid[gd] + 1;
uint32_t index_right = get_grid_index<D, C>(gridtype, align_corners, 0, hashmap_size, resolution, pos_grid_local);
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
results_grad[ch] += w * (grid[index_right + ch] - grid[index_left + ch]);
}
}
#pragma unroll
for (uint32_t ch = 0; ch < C; ch++) {
dy_dx[gd * C + ch] = results_grad[ch];
}
}
}
}
template <typename scalar_t, uint32_t D, uint32_t C, uint32_t N_C>
__global__ void kernel_grid_backward(
const scalar_t * __restrict__ grad,
const float * __restrict__ inputs,
const scalar_t * __restrict__ grid,
const int * __restrict__ offsets,
scalar_t * __restrict__ grad_grid,
const uint32_t B, const uint32_t L, const float S, const uint32_t H,
const uint32_t gridtype,
const bool align_corners
) {
const uint32_t b = (blockIdx.x * blockDim.x + threadIdx.x) * N_C / C;
if (b >= B) return;
const uint32_t level = blockIdx.y;
const uint32_t ch = (blockIdx.x * blockDim.x + threadIdx.x) * N_C - b * C;
// locate
grad_grid += offsets[level] * C;
inputs += b * D;
grad += level * B * C + b * C + ch; // L, B, C
const uint32_t hashmap_size = offsets[level + 1] - offsets[level];
const float scale = exp2f(level * S) * H - 1.0f;
const uint32_t resolution = (uint32_t)ceil(scale) + 1;
// check input range (should be in [0, 1])
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if (inputs[d] < 0 || inputs[d] > 1) {
return; // grad is init as 0, so we simply return.
}
}
// calculate coordinate
float pos[D];
uint32_t pos_grid[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
pos[d] = inputs[d] * scale + (align_corners ? 0.0f : 0.5f);
pos_grid[d] = floorf(pos[d]);
pos[d] -= (float)pos_grid[d];
}
scalar_t grad_cur[N_C] = {0}; // fetch to register
#pragma unroll
for (uint32_t c = 0; c < N_C; c++) {
grad_cur[c] = grad[c];
}
// interpolate
#pragma unroll
for (uint32_t idx = 0; idx < (1 << D); idx++) {
float w = 1;
uint32_t pos_grid_local[D];
#pragma unroll
for (uint32_t d = 0; d < D; d++) {
if ((idx & (1 << d)) == 0) {
w *= 1 - pos[d];
pos_grid_local[d] = pos_grid[d];
} else {
w *= pos[d];
pos_grid_local[d] = pos_grid[d] + 1;
}
}
uint32_t index = get_grid_index<D, C>(gridtype, align_corners, ch, hashmap_size, resolution, pos_grid_local);
// atomicAdd for __half is slow (especially for large values), so we use __half2 if N_C % 2 == 0
// TODO: use float which is better than __half, if N_C % 2 != 0
if (std::is_same<scalar_t, at::Half>::value && N_C % 2 == 0) {
#pragma unroll
for (uint32_t c = 0; c < N_C; c += 2) {
// process two __half at once (by interpreting as a __half2)
__half2 v = {(__half)(w * grad_cur[c]), (__half)(w * grad_cur[c + 1])};
atomicAdd((__half2*)&grad_grid[index + c], v);
}
// float, or __half when N_C % 2 != 0 (which means C == 1)
} else {
#pragma unroll
for (uint32_t c = 0; c < N_C; c++) {
atomicAdd(&grad_grid[index + c], w * grad_cur[c]);
}
}
}
}
template <typename scalar_t, uint32_t D, uint32_t C>
__global__ void kernel_input_backward(
const scalar_t * __restrict__ grad,
const scalar_t * __restrict__ dy_dx,
scalar_t * __restrict__ grad_inputs,
uint32_t B, uint32_t L
) {
const uint32_t t = threadIdx.x + blockIdx.x * blockDim.x;
if (t >= B * D) return;
const uint32_t b = t / D;
const uint32_t d = t - b * D;
dy_dx += b * L * D * C;
scalar_t result = 0;
# pragma unroll
for (int l = 0; l < L; l++) {
# pragma unroll
for (int ch = 0; ch < C; ch++) {
result += grad[l * B * C + b * C + ch] * dy_dx[l * D * C + d * C + ch];
}
}
grad_inputs[t] = result;
}
template <typename scalar_t, uint32_t D>
void kernel_grid_wrapper(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) {
static constexpr uint32_t N_THREAD = 512;
const dim3 blocks_hashgrid = { div_round_up(B, N_THREAD), L, 1 };
switch (C) {
case 1: kernel_grid<scalar_t, D, 1><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, dy_dx, gridtype, align_corners); break;
case 2: kernel_grid<scalar_t, D, 2><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, dy_dx, gridtype, align_corners); break;
case 4: kernel_grid<scalar_t, D, 4><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, dy_dx, gridtype, align_corners); break;
case 8: kernel_grid<scalar_t, D, 8><<<blocks_hashgrid, N_THREAD>>>(inputs, embeddings, offsets, outputs, B, L, S, H, dy_dx, gridtype, align_corners); break;
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."};
}
}
// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// outputs: [L, B, C], float (L first, so only one level of hashmap needs to fit into cache at a time.)
// H: base resolution
// dy_dx: [B, L * D * C]
template <typename scalar_t>
void grid_encode_forward_cuda(const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, scalar_t *dy_dx, const uint32_t gridtype, const bool align_corners) {
switch (D) {
case 1: kernel_grid_wrapper<scalar_t, 1>(inputs, embeddings, offsets, outputs, B, C, L, S, H, dy_dx, gridtype, align_corners); break;
case 2: kernel_grid_wrapper<scalar_t, 2>(inputs, embeddings, offsets, outputs, B, C, L, S, H, dy_dx, gridtype, align_corners); break;
case 3: kernel_grid_wrapper<scalar_t, 3>(inputs, embeddings, offsets, outputs, B, C, L, S, H, dy_dx, gridtype, align_corners); break;
case 4: kernel_grid_wrapper<scalar_t, 4>(inputs, embeddings, offsets, outputs, B, C, L, S, H, dy_dx, gridtype, align_corners); break;
case 5: kernel_grid_wrapper<scalar_t, 5>(inputs, embeddings, offsets, outputs, B, C, L, S, H, dy_dx, gridtype, align_corners); break;
default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5"};
}
}
template <typename scalar_t, uint32_t D>
void kernel_grid_backward_wrapper(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t C, const uint32_t L, const float S, const uint32_t H, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) {
static constexpr uint32_t N_THREAD = 256;
const uint32_t N_C = std::min(2u, C); // n_features_per_thread
const dim3 blocks_hashgrid = { div_round_up(B * C / N_C, N_THREAD), L, 1 };
switch (C) {
case 1:
kernel_grid_backward<scalar_t, D, 1, 1><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners);
if (dy_dx) kernel_input_backward<scalar_t, D, 1><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L);
break;
case 2:
kernel_grid_backward<scalar_t, D, 2, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners);
if (dy_dx) kernel_input_backward<scalar_t, D, 2><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L);
break;
case 4:
kernel_grid_backward<scalar_t, D, 4, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners);
if (dy_dx) kernel_input_backward<scalar_t, D, 4><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L);
break;
case 8:
kernel_grid_backward<scalar_t, D, 8, 2><<<blocks_hashgrid, N_THREAD>>>(grad, inputs, embeddings, offsets, grad_embeddings, B, L, S, H, gridtype, align_corners);
if (dy_dx) kernel_input_backward<scalar_t, D, 8><<<div_round_up(B * D, N_THREAD), N_THREAD>>>(grad, dy_dx, grad_inputs, B, L);
break;
default: throw std::runtime_error{"GridEncoding: C must be 1, 2, 4, or 8."};
}
}
// grad: [L, B, C], float
// inputs: [B, D], float, in [0, 1]
// embeddings: [sO, C], float
// offsets: [L + 1], uint32_t
// grad_embeddings: [sO, C]
// H: base resolution
template <typename scalar_t>
void grid_encode_backward_cuda(const scalar_t *grad, const float *inputs, const scalar_t *embeddings, const int *offsets, scalar_t *grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, scalar_t *dy_dx, scalar_t *grad_inputs, const uint32_t gridtype, const bool align_corners) {
switch (D) {
case 1: kernel_grid_backward_wrapper<scalar_t, 1>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, dy_dx, grad_inputs, gridtype, align_corners); break;
case 2: kernel_grid_backward_wrapper<scalar_t, 2>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, dy_dx, grad_inputs, gridtype, align_corners); break;
case 3: kernel_grid_backward_wrapper<scalar_t, 3>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, dy_dx, grad_inputs, gridtype, align_corners); break;
case 4: kernel_grid_backward_wrapper<scalar_t, 4>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, dy_dx, grad_inputs, gridtype, align_corners); break;
case 5: kernel_grid_backward_wrapper<scalar_t, 5>(grad, inputs, embeddings, offsets, grad_embeddings, B, C, L, S, H, dy_dx, grad_inputs, gridtype, align_corners); break;
default: throw std::runtime_error{"GridEncoding: D must be 1, 2, 3, 4, or 5"};
}
}
void grid_encode_forward(const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor outputs, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, at::optional<at::Tensor> dy_dx, const uint32_t gridtype, const bool align_corners) {
CHECK_CUDA(inputs);
CHECK_CUDA(embeddings);
CHECK_CUDA(offsets);
CHECK_CUDA(outputs);
// CHECK_CUDA(dy_dx);
CHECK_CONTIGUOUS(inputs);
CHECK_CONTIGUOUS(embeddings);
CHECK_CONTIGUOUS(offsets);
CHECK_CONTIGUOUS(outputs);
// CHECK_CONTIGUOUS(dy_dx);
CHECK_IS_FLOATING(inputs);
CHECK_IS_FLOATING(embeddings);
CHECK_IS_INT(offsets);
CHECK_IS_FLOATING(outputs);
// CHECK_IS_FLOATING(dy_dx);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
embeddings.scalar_type(), "grid_encode_forward", ([&] {
grid_encode_forward_cuda<scalar_t>(inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), outputs.data_ptr<scalar_t>(), B, D, C, L, S, H, dy_dx.has_value() ? dy_dx.value().data_ptr<scalar_t>() : nullptr, gridtype, align_corners);
}));
}
void grid_encode_backward(const at::Tensor grad, const at::Tensor inputs, const at::Tensor embeddings, const at::Tensor offsets, at::Tensor grad_embeddings, const uint32_t B, const uint32_t D, const uint32_t C, const uint32_t L, const float S, const uint32_t H, const at::optional<at::Tensor> dy_dx, at::optional<at::Tensor> grad_inputs, const uint32_t gridtype, const bool align_corners) {
CHECK_CUDA(grad);
CHECK_CUDA(inputs);
CHECK_CUDA(embeddings);
CHECK_CUDA(offsets);
CHECK_CUDA(grad_embeddings);
// CHECK_CUDA(dy_dx);
// CHECK_CUDA(grad_inputs);
CHECK_CONTIGUOUS(grad);
CHECK_CONTIGUOUS(inputs);
CHECK_CONTIGUOUS(embeddings);
CHECK_CONTIGUOUS(offsets);
CHECK_CONTIGUOUS(grad_embeddings);
// CHECK_CONTIGUOUS(dy_dx);
// CHECK_CONTIGUOUS(grad_inputs);
CHECK_IS_FLOATING(grad);
CHECK_IS_FLOATING(inputs);
CHECK_IS_FLOATING(embeddings);
CHECK_IS_INT(offsets);
CHECK_IS_FLOATING(grad_embeddings);
// CHECK_IS_FLOATING(dy_dx);
// CHECK_IS_FLOATING(grad_inputs);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad.scalar_type(), "grid_encode_backward", ([&] {
grid_encode_backward_cuda<scalar_t>(grad.data_ptr<scalar_t>(), inputs.data_ptr<float>(), embeddings.data_ptr<scalar_t>(), offsets.data_ptr<int>(), grad_embeddings.data_ptr<scalar_t>(), B, D, C, L, S, H, dy_dx.has_value() ? dy_dx.value().data_ptr<scalar_t>() : nullptr, grad_inputs.has_value() ? grad_inputs.value().data_ptr<scalar_t>() : nullptr, gridtype, align_corners);
}));
}