Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import torch | |
import torch.distributed as dist | |
from torch.nn import Module | |
from torch.nn.functional import normalize, linear | |
from torch.nn.parameter import Parameter | |
class PartialFC(Module): | |
""" | |
Author: {Xiang An, Yang Xiao, XuHan Zhu} in DeepGlint, | |
Partial FC: Training 10 Million Identities on a Single Machine | |
See the original paper: | |
https://arxiv.org/abs/2010.05222 | |
""" | |
def __init__(self, rank, local_rank, world_size, batch_size, resume, | |
margin_softmax, num_classes, sample_rate=1.0, embedding_size=512, prefix="./"): | |
""" | |
rank: int | |
Unique process(GPU) ID from 0 to world_size - 1. | |
local_rank: int | |
Unique process(GPU) ID within the server from 0 to 7. | |
world_size: int | |
Number of GPU. | |
batch_size: int | |
Batch size on current rank(GPU). | |
resume: bool | |
Select whether to restore the weight of softmax. | |
margin_softmax: callable | |
A function of margin softmax, eg: cosface, arcface. | |
num_classes: int | |
The number of class center storage in current rank(CPU/GPU), usually is total_classes // world_size, | |
required. | |
sample_rate: float | |
The partial fc sampling rate, when the number of classes increases to more than 2 millions, Sampling | |
can greatly speed up training, and reduce a lot of GPU memory, default is 1.0. | |
embedding_size: int | |
The feature dimension, default is 512. | |
prefix: str | |
Path for save checkpoint, default is './'. | |
""" | |
super(PartialFC, self).__init__() | |
# | |
self.num_classes: int = num_classes | |
self.rank: int = rank | |
self.local_rank: int = local_rank | |
self.device: torch.device = torch.device("cuda:{}".format(self.local_rank)) | |
self.world_size: int = world_size | |
self.batch_size: int = batch_size | |
self.margin_softmax: callable = margin_softmax | |
self.sample_rate: float = sample_rate | |
self.embedding_size: int = embedding_size | |
self.prefix: str = prefix | |
self.num_local: int = num_classes // world_size + int(rank < num_classes % world_size) | |
self.class_start: int = num_classes // world_size * rank + min(rank, num_classes % world_size) | |
self.num_sample: int = int(self.sample_rate * self.num_local) | |
self.weight_name = os.path.join(self.prefix, "rank_{}_softmax_weight.pt".format(self.rank)) | |
self.weight_mom_name = os.path.join(self.prefix, "rank_{}_softmax_weight_mom.pt".format(self.rank)) | |
if resume: | |
try: | |
self.weight: torch.Tensor = torch.load(self.weight_name) | |
self.weight_mom: torch.Tensor = torch.load(self.weight_mom_name) | |
if self.weight.shape[0] != self.num_local or self.weight_mom.shape[0] != self.num_local: | |
raise IndexError | |
logging.info("softmax weight resume successfully!") | |
logging.info("softmax weight mom resume successfully!") | |
except (FileNotFoundError, KeyError, IndexError): | |
self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) | |
self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) | |
logging.info("softmax weight init!") | |
logging.info("softmax weight mom init!") | |
else: | |
self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) | |
self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) | |
logging.info("softmax weight init successfully!") | |
logging.info("softmax weight mom init successfully!") | |
self.stream: torch.cuda.Stream = torch.cuda.Stream(local_rank) | |
self.index = None | |
if int(self.sample_rate) == 1: | |
self.update = lambda: 0 | |
self.sub_weight = Parameter(self.weight) | |
self.sub_weight_mom = self.weight_mom | |
else: | |
self.sub_weight = Parameter(torch.empty((0, 0)).cuda(local_rank)) | |
def save_params(self): | |
""" Save softmax weight for each rank on prefix | |
""" | |
torch.save(self.weight.data, self.weight_name) | |
torch.save(self.weight_mom, self.weight_mom_name) | |
def sample(self, total_label): | |
""" | |
Sample all positive class centers in each rank, and random select neg class centers to filling a fixed | |
`num_sample`. | |
total_label: tensor | |
Label after all gather, which cross all GPUs. | |
""" | |
index_positive = (self.class_start <= total_label) & (total_label < self.class_start + self.num_local) | |
total_label[~index_positive] = -1 | |
total_label[index_positive] -= self.class_start | |
if int(self.sample_rate) != 1: | |
positive = torch.unique(total_label[index_positive], sorted=True) | |
if self.num_sample - positive.size(0) >= 0: | |
perm = torch.rand(size=[self.num_local], device=self.device) | |
perm[positive] = 2.0 | |
index = torch.topk(perm, k=self.num_sample)[1] | |
index = index.sort()[0] | |
else: | |
index = positive | |
self.index = index | |
total_label[index_positive] = torch.searchsorted(index, total_label[index_positive]) | |
self.sub_weight = Parameter(self.weight[index]) | |
self.sub_weight_mom = self.weight_mom[index] | |
def forward(self, total_features, norm_weight): | |
""" Partial fc forward, `logits = X * sample(W)` | |
""" | |
torch.cuda.current_stream().wait_stream(self.stream) | |
logits = linear(total_features, norm_weight) | |
return logits | |
def update(self): | |
""" Set updated weight and weight_mom to memory bank. | |
""" | |
self.weight_mom[self.index] = self.sub_weight_mom | |
self.weight[self.index] = self.sub_weight | |
def prepare(self, label, optimizer): | |
""" | |
get sampled class centers for cal softmax. | |
label: tensor | |
Label tensor on each rank. | |
optimizer: opt | |
Optimizer for partial fc, which need to get weight mom. | |
""" | |
with torch.cuda.stream(self.stream): | |
total_label = torch.zeros( | |
size=[self.batch_size * self.world_size], device=self.device, dtype=torch.long) | |
dist.all_gather(list(total_label.chunk(self.world_size, dim=0)), label) | |
self.sample(total_label) | |
optimizer.state.pop(optimizer.param_groups[-1]['params'][0], None) | |
optimizer.param_groups[-1]['params'][0] = self.sub_weight | |
optimizer.state[self.sub_weight]['momentum_buffer'] = self.sub_weight_mom | |
norm_weight = normalize(self.sub_weight) | |
return total_label, norm_weight | |
def forward_backward(self, label, features, optimizer): | |
""" | |
Partial fc forward and backward with model parallel | |
label: tensor | |
Label tensor on each rank(GPU) | |
features: tensor | |
Features tensor on each rank(GPU) | |
optimizer: optimizer | |
Optimizer for partial fc | |
Returns: | |
-------- | |
x_grad: tensor | |
The gradient of features. | |
loss_v: tensor | |
Loss value for cross entropy. | |
""" | |
total_label, norm_weight = self.prepare(label, optimizer) | |
total_features = torch.zeros( | |
size=[self.batch_size * self.world_size, self.embedding_size], device=self.device) | |
dist.all_gather(list(total_features.chunk(self.world_size, dim=0)), features.data) | |
total_features.requires_grad = True | |
logits = self.forward(total_features, norm_weight) | |
logits = self.margin_softmax(logits, total_label) | |
with torch.no_grad(): | |
max_fc = torch.max(logits, dim=1, keepdim=True)[0] | |
dist.all_reduce(max_fc, dist.ReduceOp.MAX) | |
# calculate exp(logits) and all-reduce | |
logits_exp = torch.exp(logits - max_fc) | |
logits_sum_exp = logits_exp.sum(dim=1, keepdims=True) | |
dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM) | |
# calculate prob | |
logits_exp.div_(logits_sum_exp) | |
# get one-hot | |
grad = logits_exp | |
index = torch.where(total_label != -1)[0] | |
one_hot = torch.zeros(size=[index.size()[0], grad.size()[1]], device=grad.device) | |
one_hot.scatter_(1, total_label[index, None], 1) | |
# calculate loss | |
loss = torch.zeros(grad.size()[0], 1, device=grad.device) | |
loss[index] = grad[index].gather(1, total_label[index, None]) | |
dist.all_reduce(loss, dist.ReduceOp.SUM) | |
loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1) | |
# calculate grad | |
grad[index] -= one_hot | |
grad.div_(self.batch_size * self.world_size) | |
logits.backward(grad) | |
if total_features.grad is not None: | |
total_features.grad.detach_() | |
x_grad: torch.Tensor = torch.zeros_like(features, requires_grad=True) | |
# feature gradient all-reduce | |
dist.reduce_scatter(x_grad, list(total_features.grad.chunk(self.world_size, dim=0))) | |
x_grad = x_grad * self.world_size | |
# backward backbone | |
return x_grad, loss_v | |