Spaces:
Sleeping
Sleeping
import argparse | |
import cv2 | |
import numpy as np | |
import torch | |
from backbones import get_model | |
def inference(weight, name, img): | |
if img is None: | |
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8) | |
else: | |
img = cv2.imread(img) | |
img = cv2.resize(img, (112, 112)) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = np.transpose(img, (2, 0, 1)) | |
img = torch.from_numpy(img).unsqueeze(0).float() | |
img.div_(255).sub_(0.5).div_(0.5) | |
net = get_model(name, fp16=False) | |
net.load_state_dict(torch.load(weight)) | |
net.eval() | |
feat = net(img).numpy() | |
print(feat) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') | |
parser.add_argument('--network', type=str, default='r50', help='backbone network') | |
parser.add_argument('--weight', type=str, default='') | |
parser.add_argument('--img', type=str, default=None) | |
args = parser.parse_args() | |
inference(args.weight, args.network, args.img) | |