File size: 13,653 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch, uuid
import os, sys, shutil, platform
# from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff  
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from src.utils.init_path import init_path

# from pydub import AudioSegment
# def mp3_to_wav(mp3_filename,wav_filename,frame_rate):
#     mp3_file = AudioSegment.from_file(file=mp3_filename)
#     mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav")

class SadTalker():

    def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False):

        if torch.cuda.is_available():
            device = "cuda"
        elif platform.system() == 'Darwin': # macos 
            device = "mps"
        else:
            device = "cpu"
        
        self.device = device

        os.environ['TORCH_HOME']= checkpoint_path

        self.checkpoint_path = checkpoint_path
        self.config_path = config_path
        self.sadtalker_paths = init_path(checkpoint_path, self.config_path, 256, False, 'crop')
        self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)
        self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device)

    def test(self, 
            pic_path,
            crop_pic_path,
            first_coeff_path, 
            crop_info,
            source_image, driven_audio, preprocess='crop', 
            still_mode=False,  use_enhancer=False, batch_size=1, size=256, 
            pose_style = 0, 
            facerender='facevid2vid',
            exp_scale=1.0, 
            use_ref_video = False,
            ref_video = None,
            ref_info = None,
            use_idle_mode = False,
            length_of_audio = 0, use_blink=True, fps=20,
            result_dir='./results/'):

        
        # print(self.sadtalker_paths)
            
        
        # self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device)
        
        # if facerender == 'facevid2vid' and self.device != 'mps':
        #     self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)
        # elif facerender == 'pirender' or self.device == 'mps':
        #     self.animate_from_coeff = AnimateFromCoeff_PIRender(self.sadtalker_paths, self.device)
        #     facerender = 'pirender'
        # else:
        #     raise(RuntimeError('Unknown model: {}'.format(facerender)))
            

        # time_tag = str(uuid.uuid4())
        # save_dir = os.path.join(result_dir, time_tag)
        # os.makedirs(save_dir, exist_ok=True)
        save_dir = result_dir
        os.makedirs(save_dir, exist_ok=True)
        # input_dir = os.path.join(save_dir, 'input')
        # os.makedirs(input_dir, exist_ok=True)

        # print(source_image)
        # pic_path = os.path.join(input_dir, os.path.basename(source_image)) 
        # shutil.copy(source_image, input_dir)

        # if driven_audio is not None and os.path.isfile(driven_audio):
        #     audio_path = os.path.join(input_dir, os.path.basename(driven_audio))  

        #     #### mp3 to wav
        #     if '.mp3' in audio_path:
        #         mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
        #         audio_path = audio_path.replace('.mp3', '.wav')
        #     else:
        #         shutil.move(driven_audio, input_dir)

        # elif use_idle_mode:
        #     audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav') ## generate audio from this new audio_path
        #     from pydub import AudioSegment
        #     one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio)  #duration in milliseconds
        #     one_sec_segment.export(audio_path, format="wav")
        # else:
        #     print(use_ref_video, ref_info)
        #     assert use_ref_video == True and ref_info == 'all'

        # if use_ref_video and ref_info == 'all': # full ref mode
        #     ref_video_videoname = os.path.basename(ref_video)
        #     audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
        #     print('new audiopath:',audio_path)
        #     # if ref_video contains audio, set the audio from ref_video.
        #     cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path)
        #     os.system(cmd)        

        # os.makedirs(save_dir, exist_ok=True)
        
        #crop image and extract 3dmm from image
        # first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
        # os.makedirs(first_frame_dir, exist_ok=True)
        # first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size)
        
        # if first_coeff_path is None:
        #     raise AttributeError("No face is detected")

        # if use_ref_video:
        #     print('using ref video for genreation')
        #     ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
        #     ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
        #     os.makedirs(ref_video_frame_dir, exist_ok=True)
        #     print('3DMM Extraction for the reference video providing pose')
        #     ref_video_coeff_path, _, _ =  self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
        # else:
        #     ref_video_coeff_path = None

        # if use_ref_video:
        #     if ref_info == 'pose':
        #         ref_pose_coeff_path = ref_video_coeff_path
        #         ref_eyeblink_coeff_path = None
        #     elif ref_info == 'blink':
        #         ref_pose_coeff_path = None
        #         ref_eyeblink_coeff_path = ref_video_coeff_path
        #     elif ref_info == 'pose+blink':
        #         ref_pose_coeff_path = ref_video_coeff_path
        #         ref_eyeblink_coeff_path = ref_video_coeff_path
        #     elif ref_info == 'all':            
        #         ref_pose_coeff_path = None
        #         ref_eyeblink_coeff_path = None
        #     else:
        #         raise('error in refinfo')
        # else:
        #     ref_pose_coeff_path = None
        #     ref_eyeblink_coeff_path = None

        ref_pose_coeff_path = None
        ref_eyeblink_coeff_path = None
        audio_path = driven_audio
        # fps = 25
        #audio2ceoff
        # if use_ref_video and ref_info == 'all':
        #     coeff_path = ref_video_coeff_path # self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
        # else:
        batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \
            idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink, fps = fps) # longer audio?
        coeff = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)

        #coeff2video
        data = get_facerender_data(coeff, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \
            preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender)
        return_path = self.animate_from_coeff.generate(data, save_dir,  pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size, fps = fps)
        # video_name = data['video_name']
        # print(f'The generated video is named {video_name} in {save_dir}')

        # del self.preprocess_model
        # del self.audio_to_coeff
        # del self.animate_from_coeff

        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            
        import gc; gc.collect()
        
        return return_path
    
    def test2(self, source_image, driven_audio, preprocess='crop', 
        still_mode=False,  use_enhancer=False, batch_size=1, size=256, 
        pose_style = 0, 
        facerender='facevid2vid',
        exp_scale=1.0, 
        use_ref_video = False,
        ref_video = None,
        ref_info = None,
        use_idle_mode = False,
        length_of_audio = 0, use_blink=True, fps = 20,
        result_dir='./results/'):
        os.makedirs(result_dir, exist_ok=True)
        self.sadtalker_paths = init_path(self.checkpoint_path, self.config_path, size, False, preprocess)
        print(self.sadtalker_paths)
            
        self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device)
        self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device)
        
        self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device)

        time_tag = str(uuid.uuid4())
        save_dir = os.path.join(result_dir, time_tag)
        os.makedirs(save_dir, exist_ok=True)

        input_dir = os.path.join(save_dir, 'input')
        os.makedirs(input_dir, exist_ok=True)

        print(source_image)
        pic_path = os.path.join(input_dir, os.path.basename(source_image)) 
        shutil.copy(source_image, input_dir)

        if driven_audio is not None and os.path.isfile(driven_audio):
            audio_path = os.path.join(input_dir, os.path.basename(driven_audio))  
            shutil.copy(driven_audio, input_dir)

        elif use_idle_mode:
            audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav') ## generate audio from this new audio_path
            from pydub import AudioSegment
            one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio)  #duration in milliseconds
            one_sec_segment.export(audio_path, format="wav")
        else:
            assert driven_audio is not None, "No audio is given"
            print(use_ref_video, ref_info)
            assert use_ref_video == True and ref_info == 'all'

        if use_ref_video and ref_info == 'all': # full ref mode
            ref_video_videoname = os.path.basename(ref_video)
            audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
            print('new audiopath:',audio_path)
            # if ref_video contains audio, set the audio from ref_video.
            cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path)
            os.system(cmd)        

        os.makedirs(save_dir, exist_ok=True)
        
        #crop image and extract 3dmm from image
        first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
        os.makedirs(first_frame_dir, exist_ok=True)
        first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size)
        print(first_coeff_path, crop_info)
        if first_coeff_path is None:
            raise AttributeError("No face is detected")

        if use_ref_video:
            print('using ref video for genreation')
            ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
            ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
            os.makedirs(ref_video_frame_dir, exist_ok=True)
            print('3DMM Extraction for the reference video providing pose')
            ref_video_coeff_path, _, _ =  self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
        else:
            ref_video_coeff_path = None

        if use_ref_video:
            if ref_info == 'pose':
                ref_pose_coeff_path = ref_video_coeff_path
                ref_eyeblink_coeff_path = None
            elif ref_info == 'blink':
                ref_pose_coeff_path = None
                ref_eyeblink_coeff_path = ref_video_coeff_path
            elif ref_info == 'pose+blink':
                ref_pose_coeff_path = ref_video_coeff_path
                ref_eyeblink_coeff_path = ref_video_coeff_path
            elif ref_info == 'all':            
                ref_pose_coeff_path = None
                ref_eyeblink_coeff_path = None
            else:
                raise('error in refinfo')
        else:
            ref_pose_coeff_path = None
            ref_eyeblink_coeff_path = None

        #audio2ceoff
        if use_ref_video and ref_info == 'all':
            coeff_path = ref_video_coeff_path # self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
        else:
            batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \
                idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink, fps = fps) # longer audio?
            coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)

        #coeff2video
        data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \
            preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender)
        return_path = self.animate_from_coeff.generate(data, save_dir,  pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size, fps = fps)
        # video_name = data['video_name']
        print(f'The generated video is saved in {return_path}')

        del self.preprocess_model
        # del self.audio_to_coeff
        # del self.animate_from_coeff

        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
            
        import gc; gc.collect()
        
        return return_path