File size: 15,034 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import time
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCTC, AutoProcessor

import pyaudio
import soundfile as sf
import resampy

from queue import Queue
from threading import Thread, Event


def _read_frame(stream, exit_event, queue, chunk):

    while True:
        if exit_event.is_set():
            print(f'[INFO] read frame thread ends')
            break
        frame = stream.read(chunk, exception_on_overflow=False)
        frame = np.frombuffer(frame, dtype=np.int16).astype(np.float32) / 32767 # [chunk]
        queue.put(frame)

def _play_frame(stream, exit_event, queue, chunk):

    while True:
        if exit_event.is_set():
            print(f'[INFO] play frame thread ends')
            break
        frame = queue.get()
        frame = (frame * 32767).astype(np.int16).tobytes()
        stream.write(frame, chunk)

class ASR:
    def __init__(self, opt):

        self.opt = opt

        self.play = opt.asr_play

        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.fps = opt.fps # 20 ms per frame
        self.sample_rate = 16000
        self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
        self.mode = 'live' if opt.asr_wav == '' else 'file'

        if 'esperanto' in self.opt.asr_model:
            self.audio_dim = 44
        elif 'deepspeech' in self.opt.asr_model:
            self.audio_dim = 29
        else:
            self.audio_dim = 32

        # prepare context cache
        # each segment is (stride_left + ctx + stride_right) * 20ms, latency should be (ctx + stride_right) * 20ms
        self.context_size = opt.m
        self.stride_left_size = opt.l
        self.stride_right_size = opt.r
        self.text = '[START]\n'
        self.terminated = False
        self.frames = []

        # pad left frames
        if self.stride_left_size > 0:
            self.frames.extend([np.zeros(self.chunk, dtype=np.float32)] * self.stride_left_size)


        self.exit_event = Event()
        self.audio_instance = pyaudio.PyAudio()

        # create input stream
        if self.mode == 'file':
            self.file_stream = self.create_file_stream()
        else:
            # start a background process to read frames
            self.input_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, output=False, frames_per_buffer=self.chunk)
            self.queue = Queue()
            self.process_read_frame = Thread(target=_read_frame, args=(self.input_stream, self.exit_event, self.queue, self.chunk))
        
        # play out the audio too...?
        if self.play:
            self.output_stream = self.audio_instance.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=False, output=True, frames_per_buffer=self.chunk)
            self.output_queue = Queue()
            self.process_play_frame = Thread(target=_play_frame, args=(self.output_stream, self.exit_event, self.output_queue, self.chunk))

        # current location of audio
        self.idx = 0

        # create wav2vec model
        print(f'[INFO] loading ASR model {self.opt.asr_model}...')
        self.processor = AutoProcessor.from_pretrained(opt.asr_model)
        self.model = AutoModelForCTC.from_pretrained(opt.asr_model).to(self.device)

        # prepare to save logits
        if self.opt.asr_save_feats:
            self.all_feats = []

        # the extracted features 
        # use a loop queue to efficiently record endless features: [f--t---][-------][-------]
        self.feat_buffer_size = 4
        self.feat_buffer_idx = 0
        self.feat_queue = torch.zeros(self.feat_buffer_size * self.context_size, self.audio_dim, dtype=torch.float32, device=self.device)

        # TODO: hard coded 16 and 8 window size...
        self.front = self.feat_buffer_size * self.context_size - 8 # fake padding
        self.tail = 8
        # attention window...
        self.att_feats = [torch.zeros(self.audio_dim, 16, dtype=torch.float32, device=self.device)] * 4 # 4 zero padding...

        # warm up steps needed: mid + right + window_size + attention_size
        self.warm_up_steps = self.context_size + self.stride_right_size + 8 + 2 * 3

        self.listening = False
        self.playing = False

    def listen(self):
        # start
        if self.mode == 'live' and not self.listening:
            print(f'[INFO] starting read frame thread...')
            self.process_read_frame.start()
            self.listening = True
        
        if self.play and not self.playing:
            print(f'[INFO] starting play frame thread...')
            self.process_play_frame.start()
            self.playing = True

    def stop(self):

        self.exit_event.set()

        if self.play:
            self.output_stream.stop_stream()
            self.output_stream.close()
            if self.playing:
                self.process_play_frame.join()
                self.playing = False

        if self.mode == 'live':
            self.input_stream.stop_stream()
            self.input_stream.close()
            if self.listening:
                self.process_read_frame.join()
                self.listening = False


    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        
        self.stop()

        if self.mode == 'live':
            # live mode: also print the result text.        
            self.text += '\n[END]'
            print(self.text)

    def get_next_feat(self):
        # return a [1/8, 16] window, for the next input to nerf side.
        
        while len(self.att_feats) < 8:
            # [------f+++t-----]
            if self.front < self.tail:
                feat = self.feat_queue[self.front:self.tail]
            # [++t-----------f+]
            else:
                feat = torch.cat([self.feat_queue[self.front:], self.feat_queue[:self.tail]], dim=0)

            self.front = (self.front + 2) % self.feat_queue.shape[0]
            self.tail = (self.tail + 2) % self.feat_queue.shape[0]

            # print(self.front, self.tail, feat.shape)

            self.att_feats.append(feat.permute(1, 0))
        
        att_feat = torch.stack(self.att_feats, dim=0) # [8, 44, 16]

        # discard old
        self.att_feats = self.att_feats[1:]

        return att_feat

    def run_step(self):

        if self.terminated:
            return

        # get a frame of audio
        frame = self.get_audio_frame()
        
        # the last frame
        if frame is None:
            # terminate, but always run the network for the left frames
            self.terminated = True
        else:
            self.frames.append(frame)
            # put to output
            if self.play:
                self.output_queue.put(frame)
            # context not enough, do not run network.
            if len(self.frames) < self.stride_left_size + self.context_size + self.stride_right_size:
                return
        
        inputs = np.concatenate(self.frames) # [N * chunk]

        # discard the old part to save memory
        if not self.terminated:
            self.frames = self.frames[-(self.stride_left_size + self.stride_right_size):]

        logits, labels, text = self.frame_to_text(inputs)
        feats = logits # better lips-sync than labels

        # save feats
        if self.opt.asr_save_feats:
            self.all_feats.append(feats)

        # record the feats efficiently.. (no concat, constant memory)
        start = self.feat_buffer_idx * self.context_size
        end = start + feats.shape[0]
        self.feat_queue[start:end] = feats
        self.feat_buffer_idx = (self.feat_buffer_idx + 1) % self.feat_buffer_size

        # very naive, just concat the text output.
        if text != '':
            self.text = self.text + ' ' + text

        # will only run once at ternimation
        if self.terminated:
            self.text += '\n[END]'
            print(self.text)
            if self.opt.asr_save_feats:
                print(f'[INFO] save all feats for training purpose... ')
                feats = torch.cat(self.all_feats, dim=0) # [N, C]
                # print('[INFO] before unfold', feats.shape)
                window_size = 16
                padding = window_size // 2
                feats = feats.view(-1, self.audio_dim).permute(1, 0).contiguous() # [C, M]
                feats = feats.view(1, self.audio_dim, -1, 1) # [1, C, M, 1]
                unfold_feats = F.unfold(feats, kernel_size=(window_size, 1), padding=(padding, 0), stride=(2, 1)) # [1, C * window_size, M / 2 + 1]
                unfold_feats = unfold_feats.view(self.audio_dim, window_size, -1).permute(2, 1, 0).contiguous() # [C, window_size, M / 2 + 1] --> [M / 2 + 1, window_size, C]
                # print('[INFO] after unfold', unfold_feats.shape)
                # save to a npy file
                if 'esperanto' in self.opt.asr_model:
                    output_path = self.opt.asr_wav.replace('.wav', '_eo.npy')
                else:
                    output_path = self.opt.asr_wav.replace('.wav', '.npy')
                np.save(output_path, unfold_feats.cpu().numpy())
                print(f"[INFO] saved logits to {output_path}")
    
    def create_file_stream(self):
    
        stream, sample_rate = sf.read(self.opt.asr_wav) # [T*sample_rate,] float64
        stream = stream.astype(np.float32)

        if stream.ndim > 1:
            print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
            stream = stream[:, 0]
    
        if sample_rate != self.sample_rate:
            print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
            stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)

        print(f'[INFO] loaded audio stream {self.opt.asr_wav}: {stream.shape}')

        return stream


    def create_pyaudio_stream(self):

        import pyaudio

        print(f'[INFO] creating live audio stream ...')

        audio = pyaudio.PyAudio()
        
        # get devices
        info = audio.get_host_api_info_by_index(0)
        n_devices = info.get('deviceCount')

        for i in range(0, n_devices):
            if (audio.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:
                name = audio.get_device_info_by_host_api_device_index(0, i).get('name')
                print(f'[INFO] choose audio device {name}, id {i}')
                break
        
        # get stream
        stream = audio.open(input_device_index=i,
                            format=pyaudio.paInt16,
                            channels=1,
                            rate=self.sample_rate,
                            input=True,
                            frames_per_buffer=self.chunk)
        
        return audio, stream

    
    def get_audio_frame(self):

        if self.mode == 'file':

            if self.idx < self.file_stream.shape[0]:
                frame = self.file_stream[self.idx: self.idx + self.chunk]
                self.idx = self.idx + self.chunk
                return frame
            else:
                return None
        
        else:

            frame = self.queue.get()
            # print(f'[INFO] get frame {frame.shape}')

            self.idx = self.idx + self.chunk

            return frame

        
    def frame_to_text(self, frame):
        # frame: [N * 320], N = (context_size + 2 * stride_size)
        
        inputs = self.processor(frame, sampling_rate=self.sample_rate, return_tensors="pt", padding=True)
        
        with torch.no_grad():
            result = self.model(inputs.input_values.to(self.device))
            logits = result.logits # [1, N - 1, 32]
        
        # cut off stride
        left = max(0, self.stride_left_size)
        right = min(logits.shape[1], logits.shape[1] - self.stride_right_size + 1) # +1 to make sure output is the same length as input.

        # do not cut right if terminated.
        if self.terminated:
            right = logits.shape[1]

        logits = logits[:, left:right]

        # print(frame.shape, inputs.input_values.shape, logits.shape)
    
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = self.processor.batch_decode(predicted_ids)[0].lower()

        
        # for esperanto
        # labels = np.array(['ŭ', '»', 'c', 'ĵ', 'ñ', '”', '„', '“', 'ǔ', 'o', 'ĝ', 'm', 'k', 'd', 'a', 'ŝ', 'z', 'i', '«', '—', '‘', 'ĥ', 'f', 'y', 'h', 'j', '|', 'r', 'u', 'ĉ', 's', '–', 'fi', 'l', 'p', '’', 'g', 'v', 't', 'b', 'n', 'e', '[UNK]', '[PAD]'])

        # labels = np.array([' ', ' ', ' ', '-', '|', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', "'", 'X', 'J', 'Q', 'Z'])
        # print(''.join(labels[predicted_ids[0].detach().cpu().long().numpy()]))
        # print(predicted_ids[0])
        # print(transcription)

        return logits[0], predicted_ids[0], transcription # [N,]


    def run(self):

        self.listen()

        while not self.terminated:
            self.run_step()

    def clear_queue(self):
        # clear the queue, to reduce potential latency...
        print(f'[INFO] clear queue')
        if self.mode == 'live':
            self.queue.queue.clear()
        if self.play:
            self.output_queue.queue.clear()

    def warm_up(self):

        self.listen()
        
        print(f'[INFO] warm up ASR live model, expected latency = {self.warm_up_steps / self.fps:.6f}s')
        t = time.time()
        for _ in range(self.warm_up_steps):
            self.run_step()
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        t = time.time() - t
        print(f'[INFO] warm-up done, actual latency = {t:.6f}s')

        self.clear_queue()

            


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--wav', type=str, default='')
    parser.add_argument('--play', action='store_true', help="play out the audio")
    
    parser.add_argument('--model', type=str, default='cpierse/wav2vec2-large-xlsr-53-esperanto')
    # parser.add_argument('--model', type=str, default='facebook/wav2vec2-large-960h-lv60-self')

    parser.add_argument('--save_feats', action='store_true')
    # audio FPS
    parser.add_argument('--fps', type=int, default=50)
    # sliding window left-middle-right length.
    parser.add_argument('-l', type=int, default=10)
    parser.add_argument('-m', type=int, default=50)
    parser.add_argument('-r', type=int, default=10)
    
    opt = parser.parse_args()

    # fix
    opt.asr_wav = opt.wav
    opt.asr_play = opt.play
    opt.asr_model = opt.model
    opt.asr_save_feats = opt.save_feats

    if 'deepspeech' in opt.asr_model:
        raise ValueError("DeepSpeech features should not use this code to extract...")

    with ASR(opt) as asr:
        asr.run()