Spaces:
Sleeping
Sleeping
File size: 15,925 Bytes
bc3753a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
import glob
import tqdm
import json
import argparse
import cv2
import numpy as np
def extract_audio(path, out_path, sample_rate=16000):
print(f'[INFO] ===== extract audio from {path} to {out_path} =====')
cmd = f'ffmpeg -i {path} -f wav -ar {sample_rate} {out_path}'
os.system(cmd)
print(f'[INFO] ===== extracted audio =====')
def extract_audio_features(path, mode='wav2vec'):
print(f'[INFO] ===== extract audio labels for {path} =====')
if mode == 'wav2vec':
cmd = f'python nerf/asr.py --wav {path} --save_feats'
else: # deepspeech
cmd = f'python data_utils/deepspeech_features/extract_ds_features.py --input {path}'
os.system(cmd)
print(f'[INFO] ===== extracted audio labels =====')
def extract_images(path, out_path, fps=25):
print(f'[INFO] ===== extract images from {path} to {out_path} =====')
cmd = f'ffmpeg -i {path} -vf fps={fps} -qmin 1 -q:v 1 -start_number 0 {os.path.join(out_path, "%d.jpg")}'
os.system(cmd)
print(f'[INFO] ===== extracted images =====')
def extract_semantics(ori_imgs_dir, parsing_dir):
print(f'[INFO] ===== extract semantics from {ori_imgs_dir} to {parsing_dir} =====')
cmd = f'python data_utils/face_parsing/test.py --respath={parsing_dir} --imgpath={ori_imgs_dir}'
os.system(cmd)
print(f'[INFO] ===== extracted semantics =====')
def extract_landmarks(ori_imgs_dir):
print(f'[INFO] ===== extract face landmarks from {ori_imgs_dir} =====')
import face_alignment
try:
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False)
except:
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
for image_path in tqdm.tqdm(image_paths):
input = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3]
input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB)
preds = fa.get_landmarks(input)
if len(preds) > 0:
lands = preds[0].reshape(-1, 2)[:,:2]
np.savetxt(image_path.replace('jpg', 'lms'), lands, '%f')
del fa
print(f'[INFO] ===== extracted face landmarks =====')
def extract_background(base_dir, ori_imgs_dir):
print(f'[INFO] ===== extract background image from {ori_imgs_dir} =====')
from sklearn.neighbors import NearestNeighbors
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
# only use 1/20 image_paths
image_paths = image_paths[::20]
# read one image to get H/W
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
h, w = tmp_image.shape[:2]
# nearest neighbors
all_xys = np.mgrid[0:h, 0:w].reshape(2, -1).transpose()
distss = []
for image_path in tqdm.tqdm(image_paths):
parse_img = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png'))
bg = (parse_img[..., 0] == 255) & (parse_img[..., 1] == 255) & (parse_img[..., 2] == 255)
fg_xys = np.stack(np.nonzero(~bg)).transpose(1, 0)
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
dists, _ = nbrs.kneighbors(all_xys)
distss.append(dists)
distss = np.stack(distss)
max_dist = np.max(distss, 0)
max_id = np.argmax(distss, 0)
bc_pixs = max_dist > 5
bc_pixs_id = np.nonzero(bc_pixs)
bc_ids = max_id[bc_pixs]
imgs = []
num_pixs = distss.shape[1]
for image_path in image_paths:
img = cv2.imread(image_path)
imgs.append(img)
imgs = np.stack(imgs).reshape(-1, num_pixs, 3)
bc_img = np.zeros((h*w, 3), dtype=np.uint8)
bc_img[bc_pixs_id, :] = imgs[bc_ids, bc_pixs_id, :]
bc_img = bc_img.reshape(h, w, 3)
max_dist = max_dist.reshape(h, w)
bc_pixs = max_dist > 5
bg_xys = np.stack(np.nonzero(~bc_pixs)).transpose()
fg_xys = np.stack(np.nonzero(bc_pixs)).transpose()
nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(fg_xys)
distances, indices = nbrs.kneighbors(bg_xys)
bg_fg_xys = fg_xys[indices[:, 0]]
bc_img[bg_xys[:, 0], bg_xys[:, 1], :] = bc_img[bg_fg_xys[:, 0], bg_fg_xys[:, 1], :]
cv2.imwrite(os.path.join(base_dir, 'bc.jpg'), bc_img)
print(f'[INFO] ===== extracted background image =====')
def extract_torso_and_gt(base_dir, ori_imgs_dir):
print(f'[INFO] ===== extract torso and gt images for {base_dir} =====')
from scipy.ndimage import binary_erosion, binary_dilation
# load bg
bg_image = cv2.imread(os.path.join(base_dir, 'bc.jpg'), cv2.IMREAD_UNCHANGED)
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
for image_path in tqdm.tqdm(image_paths):
# read ori image
ori_image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # [H, W, 3]
# read semantics
seg = cv2.imread(image_path.replace('ori_imgs', 'parsing').replace('.jpg', '.png'))
head_part = (seg[..., 0] == 255) & (seg[..., 1] == 0) & (seg[..., 2] == 0)
neck_part = (seg[..., 0] == 0) & (seg[..., 1] == 255) & (seg[..., 2] == 0)
torso_part = (seg[..., 0] == 0) & (seg[..., 1] == 0) & (seg[..., 2] == 255)
bg_part = (seg[..., 0] == 255) & (seg[..., 1] == 255) & (seg[..., 2] == 255)
# get gt image
gt_image = ori_image.copy()
gt_image[bg_part] = bg_image[bg_part]
cv2.imwrite(image_path.replace('ori_imgs', 'gt_imgs'), gt_image)
# get torso image
torso_image = gt_image.copy() # rgb
torso_image[head_part] = bg_image[head_part]
torso_alpha = 255 * np.ones((gt_image.shape[0], gt_image.shape[1], 1), dtype=np.uint8) # alpha
# torso part "vertical" in-painting...
L = 8 + 1
torso_coords = np.stack(np.nonzero(torso_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((torso_coords[:, 0], torso_coords[:, 1]))
torso_coords = torso_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(torso_coords[:, 1], return_index=True, return_counts=True)
top_torso_coords = torso_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_torso_coords_up = top_torso_coords.copy() - np.array([1, 0])
mask = head_part[tuple(top_torso_coords_up.T)]
if mask.any():
top_torso_coords = top_torso_coords[mask]
# get the color
top_torso_colors = gt_image[tuple(top_torso_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_torso_coords = top_torso_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_torso_coords += inpaint_offsets
inpaint_torso_coords = inpaint_torso_coords.reshape(-1, 2) # [Lm, 2]
inpaint_torso_colors = top_torso_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_torso_colors = (inpaint_torso_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
torso_image[tuple(inpaint_torso_coords.T)] = inpaint_torso_colors
inpaint_torso_mask = np.zeros_like(torso_image[..., 0]).astype(bool)
inpaint_torso_mask[tuple(inpaint_torso_coords.T)] = True
else:
inpaint_torso_mask = None
# neck part "vertical" in-painting...
push_down = 4
L = 48 + push_down + 1
neck_part = binary_dilation(neck_part, structure=np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=bool), iterations=3)
neck_coords = np.stack(np.nonzero(neck_part), axis=-1) # [M, 2]
# lexsort: sort 2D coords first by y then by x,
# ref: https://stackoverflow.com/questions/2706605/sorting-a-2d-numpy-array-by-multiple-axes
inds = np.lexsort((neck_coords[:, 0], neck_coords[:, 1]))
neck_coords = neck_coords[inds]
# choose the top pixel for each column
u, uid, ucnt = np.unique(neck_coords[:, 1], return_index=True, return_counts=True)
top_neck_coords = neck_coords[uid] # [m, 2]
# only keep top-is-head pixels
top_neck_coords_up = top_neck_coords.copy() - np.array([1, 0])
mask = head_part[tuple(top_neck_coords_up.T)]
top_neck_coords = top_neck_coords[mask]
# push these top down for 4 pixels to make the neck inpainting more natural...
offset_down = np.minimum(ucnt[mask] - 1, push_down)
top_neck_coords += np.stack([offset_down, np.zeros_like(offset_down)], axis=-1)
# get the color
top_neck_colors = gt_image[tuple(top_neck_coords.T)] # [m, 3]
# construct inpaint coords (vertically up, or minus in x)
inpaint_neck_coords = top_neck_coords[None].repeat(L, 0) # [L, m, 2]
inpaint_offsets = np.stack([-np.arange(L), np.zeros(L, dtype=np.int32)], axis=-1)[:, None] # [L, 1, 2]
inpaint_neck_coords += inpaint_offsets
inpaint_neck_coords = inpaint_neck_coords.reshape(-1, 2) # [Lm, 2]
inpaint_neck_colors = top_neck_colors[None].repeat(L, 0) # [L, m, 3]
darken_scaler = 0.98 ** np.arange(L).reshape(L, 1, 1) # [L, 1, 1]
inpaint_neck_colors = (inpaint_neck_colors * darken_scaler).reshape(-1, 3) # [Lm, 3]
# set color
torso_image[tuple(inpaint_neck_coords.T)] = inpaint_neck_colors
# apply blurring to the inpaint area to avoid vertical-line artifects...
inpaint_mask = np.zeros_like(torso_image[..., 0]).astype(bool)
inpaint_mask[tuple(inpaint_neck_coords.T)] = True
blur_img = torso_image.copy()
blur_img = cv2.GaussianBlur(blur_img, (5, 5), cv2.BORDER_DEFAULT)
torso_image[inpaint_mask] = blur_img[inpaint_mask]
# set mask
mask = (neck_part | torso_part | inpaint_mask)
if inpaint_torso_mask is not None:
mask = mask | inpaint_torso_mask
torso_image[~mask] = 0
torso_alpha[~mask] = 0
cv2.imwrite(image_path.replace('ori_imgs', 'torso_imgs').replace('.jpg', '.png'), np.concatenate([torso_image, torso_alpha], axis=-1))
print(f'[INFO] ===== extracted torso and gt images =====')
def face_tracking(ori_imgs_dir):
print(f'[INFO] ===== perform face tracking =====')
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
# read one image to get H/W
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
h, w = tmp_image.shape[:2]
cmd = f'python data_utils/face_tracking/face_tracker.py --path={ori_imgs_dir} --img_h={h} --img_w={w} --frame_num={len(image_paths)}'
os.system(cmd)
print(f'[INFO] ===== finished face tracking =====')
def save_transforms(base_dir, ori_imgs_dir):
print(f'[INFO] ===== save transforms =====')
import torch
image_paths = glob.glob(os.path.join(ori_imgs_dir, '*.jpg'))
# read one image to get H/W
tmp_image = cv2.imread(image_paths[0], cv2.IMREAD_UNCHANGED) # [H, W, 3]
h, w = tmp_image.shape[:2]
params_dict = torch.load(os.path.join(base_dir, 'track_params.pt'))
focal_len = params_dict['focal']
euler_angle = params_dict['euler']
trans = params_dict['trans'] / 10.0
valid_num = euler_angle.shape[0]
def euler2rot(euler_angle):
batch_size = euler_angle.shape[0]
theta = euler_angle[:, 0].reshape(-1, 1, 1)
phi = euler_angle[:, 1].reshape(-1, 1, 1)
psi = euler_angle[:, 2].reshape(-1, 1, 1)
one = torch.ones((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device)
zero = torch.zeros((batch_size, 1, 1), dtype=torch.float32, device=euler_angle.device)
rot_x = torch.cat((
torch.cat((one, zero, zero), 1),
torch.cat((zero, theta.cos(), theta.sin()), 1),
torch.cat((zero, -theta.sin(), theta.cos()), 1),
), 2)
rot_y = torch.cat((
torch.cat((phi.cos(), zero, -phi.sin()), 1),
torch.cat((zero, one, zero), 1),
torch.cat((phi.sin(), zero, phi.cos()), 1),
), 2)
rot_z = torch.cat((
torch.cat((psi.cos(), -psi.sin(), zero), 1),
torch.cat((psi.sin(), psi.cos(), zero), 1),
torch.cat((zero, zero, one), 1)
), 2)
return torch.bmm(rot_x, torch.bmm(rot_y, rot_z))
# train_val_split = int(valid_num*0.5)
# train_val_split = valid_num - 25 * 20 # take the last 20s as valid set.
train_val_split = int(valid_num * 10 / 11)
train_ids = torch.arange(0, train_val_split)
val_ids = torch.arange(train_val_split, valid_num)
rot = euler2rot(euler_angle)
rot_inv = rot.permute(0, 2, 1)
trans_inv = -torch.bmm(rot_inv, trans.unsqueeze(2))
pose = torch.eye(4, dtype=torch.float32)
save_ids = ['train', 'val']
train_val_ids = [train_ids, val_ids]
mean_z = -float(torch.mean(trans[:, 2]).item())
for split in range(2):
transform_dict = dict()
transform_dict['focal_len'] = float(focal_len[0])
transform_dict['cx'] = float(w/2.0)
transform_dict['cy'] = float(h/2.0)
transform_dict['frames'] = []
ids = train_val_ids[split]
save_id = save_ids[split]
for i in ids:
i = i.item()
frame_dict = dict()
frame_dict['img_id'] = i
frame_dict['aud_id'] = i
pose[:3, :3] = rot_inv[i]
pose[:3, 3] = trans_inv[i, :, 0]
frame_dict['transform_matrix'] = pose.numpy().tolist()
transform_dict['frames'].append(frame_dict)
with open(os.path.join(base_dir, 'transforms_' + save_id + '.json'), 'w') as fp:
json.dump(transform_dict, fp, indent=2, separators=(',', ': '))
print(f'[INFO] ===== finished saving transforms =====')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str, help="path to video file")
parser.add_argument('--task', type=int, default=-1, help="-1 means all")
parser.add_argument('--asr', type=str, default='deepspeech', help="wav2vec or deepspeech")
opt = parser.parse_args()
base_dir = os.path.dirname(opt.path)
wav_path = os.path.join(base_dir, 'aud.wav')
ori_imgs_dir = os.path.join(base_dir, 'ori_imgs')
parsing_dir = os.path.join(base_dir, 'parsing')
gt_imgs_dir = os.path.join(base_dir, 'gt_imgs')
torso_imgs_dir = os.path.join(base_dir, 'torso_imgs')
os.makedirs(ori_imgs_dir, exist_ok=True)
os.makedirs(parsing_dir, exist_ok=True)
os.makedirs(gt_imgs_dir, exist_ok=True)
os.makedirs(torso_imgs_dir, exist_ok=True)
# extract audio
if opt.task == -1 or opt.task == 1:
extract_audio(opt.path, wav_path)
# extract audio features
if opt.task == -1 or opt.task == 2:
extract_audio_features(wav_path, mode=opt.asr)
# extract images
if opt.task == -1 or opt.task == 3:
extract_images(opt.path, ori_imgs_dir)
# face parsing
if opt.task == -1 or opt.task == 4:
extract_semantics(ori_imgs_dir, parsing_dir)
# extract bg
if opt.task == -1 or opt.task == 5:
extract_background(base_dir, ori_imgs_dir)
# extract torso images and gt_images
if opt.task == -1 or opt.task == 6:
extract_torso_and_gt(base_dir, ori_imgs_dir)
# extract face landmarks
if opt.task == -1 or opt.task == 7:
extract_landmarks(ori_imgs_dir)
# face tracking
if opt.task == -1 or opt.task == 8:
face_tracking(ori_imgs_dir)
# save transforms.json
if opt.task == -1 or opt.task == 9:
save_transforms(base_dir, ori_imgs_dir)
|