File size: 10,483 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import random 
import gradio as gr

from src.cost_time import calculate_time

from configs import *
os.environ["GRADIO_TEMP_DIR"]= './temp'

description = """<p style="text-align: center; font-weight: bold;">
    <span style="font-size: 28px;">Linly 智能对话系统 (Linly-Talker)</span>
    <br>
    <span style="font-size: 18px;" id="paper-info">
        [<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
        [<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
        [<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
        [<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
    </span>
    <br> 
    <span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span>
</p>
"""

# 设定默认参数值,可修改
# source_image = r'example.png'
blink_every = True
size_of_image = 256
preprocess_type = 'crop'
facerender = 'facevid2vid'
enhancer = False
is_still_mode = False

exp_weight = 1

use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5

@calculate_time
def TTS_response(text, 
                 voice, rate, volume, pitch,
                 am, voc, lang, male,
                 tts_method = 'PaddleTTS', save_path = 'answer.wav'):
    print(text, voice, rate, volume, pitch, am, voc, lang, male, tts_method, save_path)
    if tts_method == 'Edge-TTS':
        try:
            edgetts.predict(text, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
        except:
            os.system(f'edge-tts --text "{text}" --voice {voice} --write-media answer.wav')
        return 'answer.wav'
    elif tts_method == 'PaddleTTS':
        paddletts.predict(text, am, voc, lang = lang, male=male, save_path = save_path)
        return save_path

@calculate_time
def Talker_response(source_image, source_video, method = 'SadTalker', driven_audio = '', batch_size = 2):
    # print(source_image, method , driven_audio, batch_size)
    if source_video:
        source_image = source_video
    print(source_image, method , driven_audio, batch_size)
    pose_style = random.randint(0, 45)
    if method == 'SadTalker':
        video = sadtalker.test2(source_image,
                        driven_audio,
                        preprocess_type,
                        is_still_mode,
                        enhancer,
                        batch_size,                            
                        size_of_image,
                        pose_style,
                        facerender,
                        exp_weight,
                        use_ref_video,
                        ref_video,
                        ref_info,
                        use_idle_mode,
                        length_of_audio,
                        blink_every,
                        fps=20)
    elif method == 'Wav2Lip':
        video = wav2lip.predict(source_image, driven_audio, batch_size)
    elif method == 'ER-NeRF':
        video = ernerf.predict(driven_audio)
    else:
        gr.Warning("不支持的方法:" + method)
        return None
    return video

def main():
    with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
        gr.HTML(description)
        with gr.Row(equal_height=False):
            with gr.Column(variant='panel'): 
                with gr.Tabs():
                    with gr.Tab("图片人物"):
                        source_image = gr.Image(label='Source image', type = 'filepath')
                        
                    with gr.Tab("视频人物"):
                        source_video = gr.Video(label="Source video")
                
                with gr.Tabs():
                    input_audio = gr.Audio(sources=['upload', 'microphone'], type="filepath", label = '语音')
                    input_text = gr.Textbox(label="Input Text", lines=3)
                    with gr.Column():
                        tts_method = gr.Radio(["Edge-TTS", "PaddleTTS"], label="Text To Speech Method (Edge-TTS利用微软的TTS,PaddleSpeech是离线的TTS,不过第一次运行会自动下载模型)", 
                                              value = 'Edge-TTS')
                        
                with gr.Tabs("TTS Method"):
                    # with gr.Accordion("Advanced Settings(高级设置语音参数) ", open=False):
                    with gr.Tab("Edge-TTS"):
                        
                        voice = gr.Dropdown(edgetts.SUPPORTED_VOICE, 
                                            value='zh-CN-XiaoxiaoNeural', 
                                            label="Voice")
                        rate = gr.Slider(minimum=-100,
                                            maximum=100,
                                            value=0,
                                            step=1.0,
                                            label='Rate')
                        volume = gr.Slider(minimum=0,
                                                maximum=100,
                                                value=100,
                                                step=1,
                                                label='Volume')
                        pitch = gr.Slider(minimum=-100,
                                            maximum=100,
                                            value=0,
                                            step=1,
                                            label='Pitch')
                    with gr.Tab("PaddleTTS"):
                        am = gr.Dropdown(["FastSpeech2"], label="声学模型选择", value = 'FastSpeech2')
                        voc = gr.Dropdown(["PWGan", "HifiGan"], label="声码器选择", value = 'PWGan')
                        lang = gr.Dropdown(["zh", "en", "mix", "canton"], label="语言选择", value = 'zh')
                        male = gr.Checkbox(label="男声(Male)", value=False)
                    with gr.Column(variant='panel'): 
                        batch_size = gr.Slider(minimum=1,
                                            maximum=10,
                                            value=2,
                                            step=1,
                                            label='Talker Batch size')
                button_text = gr.Button('语音生成')
                button_text.click(fn=TTS_response,inputs=[input_text, voice, rate, volume, pitch, am, voc, lang, male, tts_method],
                                  outputs=[input_audio])
                        
            with gr.Column(variant='panel'): 
                with gr.Tabs():
                    with gr.TabItem('数字人问答'):
                        method = gr.Radio(choices = ['SadTalker', 'Wav2Lip', 'ER-NeRF'], value = 'SadTalker', label = '模型选择')
                        gen_video = gr.Video(label="Generated video", format="mp4", scale=1, autoplay=True)
                video_button = gr.Button("提交", variant='primary')

            video_button.click(fn=Talker_response,inputs=[source_image, source_video, method, input_audio, batch_size] ,
                               outputs=[gen_video])
            
        with gr.Row():
            examples = [
                [
                    'examples/source_image/full_body_2.png',
                    '应对压力最有效的方法是什么?',
                ],
                [
                    'examples/source_image/full_body_1.png',
                    '如何进行时间管理?',
                ],
                [
                    'examples/source_image/full3.png',
                    '为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?',
                ],
                [
                    'examples/source_image/full4.jpeg',
                    '近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?',
                ],
                [
                    'examples/source_image/art_13.png',
                    '三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?',
                ],
                [
                    'examples/source_image/art_5.png',
                    '撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。',
                ],
            ]
            gr.Examples(examples=examples,
                        inputs=[
                            source_image,
                            input_text,
                            ], 
                        )
    return inference
    
if __name__ == "__main__":
    try:
        from TFG import SadTalker
        sadtalker = SadTalker(lazy_load=True)
    except Exception as e:
        print("SadTalker Error: ", e)
        print("如果使用SadTalker,请先下载SadTalker模型")

    try:
        from TFG import Wav2Lip
        wav2lip = Wav2Lip("checkpoints/wav2lip_gan.pth")
    except Exception as e:
        print("Wav2Lip Error: ", e)
        print("如果使用Wav2Lip,请先下载Wav2Lip模型")
        
    try:
        from TFG import ERNeRF
        ernerf = ERNeRF()
        ernerf.init_model('checkpoints/Obama_ave.pth', 'checkpoints/Obama.json')
    except Exception as e:
        print("ERNeRF Error: ", e)
        print("如果使用ERNeRF,请先下载ERNeRF模型")
    
    try:
        from TTS import EdgeTTS
        edgetts = EdgeTTS()
    except Exception as e:
        print("EdgeTTS Error: ", e)
        print("如果使用EdgeTTS,请先下载EdgeTTS模型")
    
    try:
        from TTS import PaddleTTS
        paddletts = PaddleTTS()
    except Exception as e:
        print("PaddleTTS Error: ", e)
        print("如果使用PaddleTTS,请先下载PaddleTTS模型")
        
    gr.close_all()
    demo = main()
    demo.queue()
    # demo.launch()
    demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
                server_port=port,
                # 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
                ssl_certfile=ssl_certfile,
                ssl_keyfile=ssl_keyfile,
                ssl_verify=False,
                debug=True)