Spaces:
Sleeping
Sleeping
File size: 2,862 Bytes
bc3753a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from transformers import AutoModelForCausalLM, AutoTokenizer
class LLMTemplate:
def __init__(self, model_name_or_path, mode='offline'):
"""
初始化LLM模板
Args:
model_name_or_path (str): 模型名称或路径
mode (str, optional): 模式,'offline'表示离线模式,'api'表示使用API模式。默认为'offline'。
"""
self.mode = mode
# 模型初始化
self.model, self.tokenizer = self.init_model(model_name_or_path)
self.history = None
def init_model(self, model_name_or_path):
"""
初始化语言模型
Args:
model_name_or_path (str): 模型名称或路径
Returns:
model: 加载的语言模型
tokenizer: 加载的tokenizer
"""
# TODO: 模型加载
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
return model, tokenizer
def generate(self, prompt, system_prompt=""):
"""
生成对话响应
Args:
prompt (str): 对话的提示
system_prompt (str, optional): 系统提示。默认为""。
Returns:
str: 对话响应
"""
# TODO: 模型预测
# 这一块需要尤其注意,这里的模板是借鉴了HuggingFace上的一些推理模板,需要根据自己的模型进行调整
# 这里的模板主要是为了方便调试,因为模型预测的时候,会有很多不同的输入,所以可以根据自己的模型进行调整
if self.mode != 'api':
try:
response, self.history = self.model.chat(self.tokenizer, prompt, history=self.history, system = system_prompt)
return response
except Exception as e:
print(e)
return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
else:
return self.predict_api(prompt)
def predict_api(self, prompt):
"""
使用API预测对话响应
Args:
prompt (str): 对话的提示
Returns:
str: 对话响应
"""
'''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
pass
def chat(self, system_prompt, message):
response = self.generate(message, system_prompt)
self.history.append((message, response))
return response, self.history
def clear_history(self):
self.history = []
|