File size: 18,979 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import LangSegment
import numpy as np
import librosa
import torch
import re, os
import librosa
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys
sys.path.append('GPT_SoVITS/')
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from feature_extractor import cnhubert
from my_utils import load_audio
from module.mel_processing import spectrogram_torch
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from scipy.io.wavfile import write
from time import time as ttime

if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"

is_half = True
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
if device == "cuda":
    gpu_name = torch.cuda.get_device_name(0)
    if (
            ("16" in gpu_name and "V100" not in gpu_name.upper())
            or "P40" in gpu_name.upper()
            or "P10" in gpu_name.upper()
            or "1060" in gpu_name
            or "1070" in gpu_name
            or "1080" in gpu_name
    ):
        is_half=False

if device=="cpu":
    is_half=False

dtype=torch.float16 if is_half == True else torch.float32
bert_path = os.environ.get(
    "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
cnhubert_base_path = os.environ.get(
    "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
cnhubert.cnhubert_base_path = cnhubert_base_path

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)

if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)

ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)

def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(
        audio_norm,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    return spec

def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T

class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

def clean_text_inf(text, language):
    phones, word2ph, norm_text = clean_text(text, language.replace("all_",""))
    phones = cleaned_text_to_sequence(phones)
    return phones, word2ph, norm_text

def get_bert_inf(phones, word2ph, norm_text, language):
    language=language.replace("all_","")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half == True else torch.float32,
        ).to(device)

    return bert

def splite_en_inf(sentence, language):
    pattern = re.compile(r'[a-zA-Z ]+')
    textlist = []
    langlist = []
    pos = 0
    for match in pattern.finditer(sentence):
        start, end = match.span()
        if start > pos:
            textlist.append(sentence[pos:start])
            langlist.append(language)
        textlist.append(sentence[start:end])
        langlist.append("en")
        pos = end
    if pos < len(sentence):
        textlist.append(sentence[pos:])
        langlist.append(language)
    # Merge punctuation into previous word
    for i in range(len(textlist)-1, 0, -1):
        if re.match(r'^[\W_]+$', textlist[i]):
            textlist[i-1] += textlist[i]
            del textlist[i]
            del langlist[i]
    # Merge consecutive words with the same language tag
    i = 0
    while i < len(langlist) - 1:
        if langlist[i] == langlist[i+1]:
            textlist[i] += textlist[i+1]
            del textlist[i+1]
            del langlist[i+1]
        else:
            i += 1

    return textlist, langlist

def nonen_clean_text_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    phones_list = []
    word2ph_list = []
    norm_text_list = []
    for i in range(len(textlist)):
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
        phones_list.append(phones)
        if lang == "zh":
            word2ph_list.append(word2ph)
        norm_text_list.append(norm_text)
    print(word2ph_list)
    phones = sum(phones_list, [])
    word2ph = sum(word2ph_list, [])
    norm_text = ' '.join(norm_text_list)

    return phones, word2ph, norm_text

def nonen_get_bert_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    bert_list = []
    for i in range(len(textlist)):
        text = textlist[i]
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(text, lang)
        bert = get_bert_inf(phones, word2ph, norm_text, lang)
        bert_list.append(bert)
    bert = torch.cat(bert_list, dim=1)

    return bert

def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text

def get_cleaned_text_fianl(text,language):
    if language in {"en","all_zh","all_ja"}:
        phones, word2ph, norm_text = clean_text_inf(text, language)
    elif language in {"zh", "ja","auto"}:
        phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
    return phones, word2ph, norm_text

def get_bert_final(phones, word2ph, norm_text, text_language, device, text):
    if text_language == "en":
        bert = get_bert_inf(phones, word2ph, norm_text, text_language)
    elif text_language in {"zh", "ja","auto"}:
        bert = nonen_get_bert_inf(text, text_language)
    elif text_language == "all_zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)
    else:
        bert = torch.zeros((1024, len(phones))).to(device)
    return bert

def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts

def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
    else:
        opts = [inp]
    return "\n".join(opts)

def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    return "\n".join(opts)

def cut3(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip("。").split("。")])

def cut4(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip(".").split(".")])

# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    # if not re.search(r'[^\w\s]', inp[-1]):
    # inp += '。'
    inp = inp.strip("\n")
    punds = r'[,.;?!、,。?!;:]'
    items = re.split(f'({punds})', inp)
    items = ["".join(group) for group in zip(items[::2], items[1::2])]
    opt = "\n".join(items)
    return opt

class GPT_SoVITS:
    def __init__(self):
        self.model = None
        # is_half = True
        # device = "cuda" if torch.cuda.is_available() else "cpu"
        
    def load_model(self, gpt_path, sovits_path):
        self.hz = 50
        dict_s1 = torch.load(gpt_path, map_location="cpu")
        self.config = dict_s1["config"]
        self.max_sec = self.config["data"]["max_sec"]
        t2s_model = Text2SemanticLightningModule(self.config, "****", is_train=False)
        t2s_model.load_state_dict(dict_s1["weight"])
        if is_half == True:
            t2s_model = t2s_model.half()
        self.t2s_model = t2s_model.to(device)
        self.t2s_model.eval()
        total = sum([param.nelement() for param in t2s_model.parameters()])
        print("Number of parameter: %.2fM" % (total / 1e6))
        
        dict_s2 = torch.load(sovits_path, map_location="cpu")
        self.hps = dict_s2["config"]
        self.hps = DictToAttrRecursive(self.hps)
        self.hps.model.semantic_frame_rate = "25hz"
        vq_model = SynthesizerTrn(
            self.hps.data.filter_length // 2 + 1,
            self.hps.train.segment_size // self.hps.data.hop_length,
            n_speakers=self.hps.data.n_speakers,
            **self.hps.model
        )
        if ("pretrained" not in sovits_path):
            del vq_model.enc_q
        if is_half == True:
            self.vq_model = vq_model.half().to(device)
        else:
            self.vq_model = vq_model.to(device)
        self.vq_model.eval()
        print(self.vq_model.load_state_dict(dict_s2["weight"], strict=False))
    
    def predict(self, ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut="不切", save_path = 'vits_res.wav'):
        print(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut)
        return self.get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut, save_path)

    def get_tts_wav(self, ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut="不切", save_path = 'vits_res.wav'):
        t0 = ttime()
        prompt_text = prompt_text.strip("\n")
        if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
        text = text.strip("\n")
        if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
        print("实际输入的参考文本:", prompt_text)
        print("实际输入的目标文本:", text)
        zero_wav = np.zeros(
            int(self.hps.data.sampling_rate * 0.3),
            dtype=np.float16 if is_half == True else np.float32,
        )
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)
            if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
                raise OSError("参考音频在3~10秒范围外,请更换!")
            wav16k = torch.from_numpy(wav16k)
            zero_wav_torch = torch.from_numpy(zero_wav)
            if is_half == True:
                wav16k = wav16k.half().to(device)
                zero_wav_torch = zero_wav_torch.half().to(device)
            else:
                wav16k = wav16k.to(device)
                zero_wav_torch = zero_wav_torch.to(device)
            wav16k = torch.cat([wav16k, zero_wav_torch])
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
                "last_hidden_state"
            ].transpose(
                1, 2
            )  # .float()
            codes = self.vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
        t1 = ttime()
        
        dict_language = {
            "中文": "all_zh",#全部按中文识别
            "英文": "en",#全部按英文识别#######不变
            "日文": "all_ja",#全部按日文识别
            "中英混合": "zh",#按中英混合识别####不变
            "日英混合": "ja",#按日英混合识别####不变
            "多语种混合": "auto",#多语种启动切分识别语种
        }
        prompt_language = dict_language[prompt_language]
        text_language = dict_language[text_language]

        phones1, word2ph1, norm_text1=get_cleaned_text_fianl(prompt_text, prompt_language)

        if (how_to_cut == "凑四句一切"):
            text = cut1(text)
        elif (how_to_cut == "凑50字一切"):
            text = cut2(text)
        elif (how_to_cut == "按中文句号。切"):
            text = cut3(text)
        elif (how_to_cut == "按英文句号.切"):
            text = cut4(text)
        elif (how_to_cut == "按标点符号切"):
            text = cut5(text)
        text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
        print("实际输入的目标文本(切句后):", text)
        texts = text.split("\n")
        audio_opt = []
        bert1=get_bert_final(phones1, word2ph1, norm_text1, prompt_language, device, text).to(dtype)

        for text in texts:
            # 解决输入目标文本的空行导致报错的问题
            if (len(text.strip()) == 0):
                continue
            if (text[-1] not in splits): text += "。" if text_language != "en" else "."
            print("实际输入的目标文本(每句):", text)
            phones2, word2ph2, norm_text2 = get_cleaned_text_fianl(text, text_language)
            bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device, text).to(dtype)

            bert = torch.cat([bert1, bert2], 1)

            all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
            bert = bert.to(device).unsqueeze(0)
            all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
            prompt = prompt_semantic.unsqueeze(0).to(device)
            t2 = ttime()
            with torch.no_grad():
                # pred_semantic = t2s_model.model.infer(
                pred_semantic, idx = self.t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_len,
                    prompt,
                    bert,
                    # prompt_phone_len=ph_offset,
                    top_k=self.config["inference"]["top_k"],
                    early_stop_num=self.hz * self.max_sec,
                )
            t3 = ttime()
            # print(pred_semantic.shape,idx)
            pred_semantic = pred_semantic[:, -idx:].unsqueeze(
                0
            )  # .unsqueeze(0)#mq要多unsqueeze一次
            refer = get_spepc(self.hps, ref_wav_path)  # .to(device)
            if is_half == True:
                refer = refer.half().to(device)
            else:
                refer = refer.to(device)
            # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
            audio = (
                self.vq_model.decode(
                    pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
                )
                    .detach()
                    .cpu()
                    .numpy()[0, 0]
            )  ###试试重建不带上prompt部分
            max_audio=np.abs(audio).max()#简单防止16bit爆音
            if max_audio>1:audio/=max_audio
            audio_opt.append(audio)
            audio_opt.append(zero_wav)
            t4 = ttime()
        print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
        print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
        # yield self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
        #     np.int16
        # )
        write(save_path, self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16))
        return save_path
if __name__ == "__main__":
    GPT_SoVITS_inference = GPT_SoVITS()
    gpt_path = "../../GPT-SoVITS/GPT_weights/yansang-e15.ckpt"
    sovits_path = "../../GPT-SoVITS/SoVITS_weights/yansang_e16_s144.pth"
    GPT_SoVITS_inference.load_model(gpt_path, sovits_path)
    ref_wav_path = "../../GPT-SoVITS/output/slicer_opt/vocal_output.wav_10.wav_0000846400_0000957760.wav"
    prompt_text = "你为什么要一次一次的伤我的心啊?"
    prompt_language = "中文"
    text = "大家好,这是我语音克隆的声音,本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE."
    text_language = "中英混合" 
    how_to_cut = "不切" # ["不切", "凑四句一切", "凑50字一切", "按中文句号。切", "按英文句号.切", "按标点符号切"]
    GPT_SoVITS_inference.predict(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut)