Spaces:
Sleeping
Sleeping
File size: 6,781 Bytes
bc3753a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import torch
import torch.nn as nn
import numpy as np
import os
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
PerspectiveCameras,
FoVPerspectiveCameras,
PointLights,
DirectionalLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesUV,
TexturesVertex,
blending,
)
from pytorch3d.ops import interpolate_face_attributes
from pytorch3d.renderer.blending import (
BlendParams,
hard_rgb_blend,
sigmoid_alpha_blend,
softmax_rgb_blend,
)
class SoftSimpleShader(nn.Module):
"""
Per pixel lighting - the lighting model is applied using the interpolated
coordinates and normals for each pixel. The blending function returns the
soft aggregated color using all the faces per pixel.
To use the default values, simply initialize the shader with the desired
device e.g.
"""
def __init__(
self, device="cpu", cameras=None, lights=None, materials=None, blend_params=None
):
super().__init__()
self.lights = lights if lights is not None else PointLights(device=device)
self.materials = (
materials if materials is not None else Materials(device=device)
)
self.cameras = cameras
self.blend_params = blend_params if blend_params is not None else BlendParams()
def to(self, device):
# Manually move to device modules which are not subclasses of nn.Module
self.cameras = self.cameras.to(device)
self.materials = self.materials.to(device)
self.lights = self.lights.to(device)
return self
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
texels = meshes.sample_textures(fragments)
blend_params = kwargs.get("blend_params", self.blend_params)
cameras = kwargs.get("cameras", self.cameras)
if cameras is None:
msg = "Cameras must be specified either at initialization \
or in the forward pass of SoftPhongShader"
raise ValueError(msg)
znear = kwargs.get("znear", getattr(cameras, "znear", 1.0))
zfar = kwargs.get("zfar", getattr(cameras, "zfar", 100.0))
images = softmax_rgb_blend(
texels, fragments, blend_params, znear=znear, zfar=zfar
)
return images
class Render_3DMM(nn.Module):
def __init__(
self,
focal=1015,
img_h=500,
img_w=500,
batch_size=1,
device=torch.device("cuda:0"),
):
super(Render_3DMM, self).__init__()
self.focal = focal
self.img_h = img_h
self.img_w = img_w
self.device = device
self.renderer = self.get_render(batch_size)
dir_path = os.path.dirname(os.path.realpath(__file__))
topo_info = np.load(
os.path.join(dir_path, "3DMM", "topology_info.npy"), allow_pickle=True
).item()
self.tris = torch.as_tensor(topo_info["tris"]).to(self.device)
self.vert_tris = torch.as_tensor(topo_info["vert_tris"]).to(self.device)
def compute_normal(self, geometry):
vert_1 = torch.index_select(geometry, 1, self.tris[:, 0])
vert_2 = torch.index_select(geometry, 1, self.tris[:, 1])
vert_3 = torch.index_select(geometry, 1, self.tris[:, 2])
nnorm = torch.cross(vert_2 - vert_1, vert_3 - vert_1, 2)
tri_normal = nn.functional.normalize(nnorm, dim=2)
v_norm = tri_normal[:, self.vert_tris, :].sum(2)
vert_normal = v_norm / v_norm.norm(dim=2).unsqueeze(2)
return vert_normal
def get_render(self, batch_size=1):
half_s = self.img_w * 0.5
R, T = look_at_view_transform(10, 0, 0)
R = R.repeat(batch_size, 1, 1)
T = torch.zeros((batch_size, 3), dtype=torch.float32).to(self.device)
cameras = FoVPerspectiveCameras(
device=self.device,
R=R,
T=T,
znear=0.01,
zfar=20,
fov=2 * np.arctan(self.img_w // 2 / self.focal) * 180.0 / np.pi,
)
lights = PointLights(
device=self.device,
location=[[0.0, 0.0, 1e5]],
ambient_color=[[1, 1, 1]],
specular_color=[[0.0, 0.0, 0.0]],
diffuse_color=[[0.0, 0.0, 0.0]],
)
sigma = 1e-4
raster_settings = RasterizationSettings(
image_size=(self.img_h, self.img_w),
blur_radius=np.log(1.0 / 1e-4 - 1.0) * sigma / 18.0,
faces_per_pixel=2,
perspective_correct=False,
)
blend_params = blending.BlendParams(background_color=[0, 0, 0])
renderer = MeshRenderer(
rasterizer=MeshRasterizer(raster_settings=raster_settings, cameras=cameras),
shader=SoftSimpleShader(
lights=lights, blend_params=blend_params, cameras=cameras
),
)
return renderer.to(self.device)
@staticmethod
def Illumination_layer(face_texture, norm, gamma):
n_b, num_vertex, _ = face_texture.size()
n_v_full = n_b * num_vertex
gamma = gamma.view(-1, 3, 9).clone()
gamma[:, :, 0] += 0.8
gamma = gamma.permute(0, 2, 1)
a0 = np.pi
a1 = 2 * np.pi / np.sqrt(3.0)
a2 = 2 * np.pi / np.sqrt(8.0)
c0 = 1 / np.sqrt(4 * np.pi)
c1 = np.sqrt(3.0) / np.sqrt(4 * np.pi)
c2 = 3 * np.sqrt(5.0) / np.sqrt(12 * np.pi)
d0 = 0.5 / np.sqrt(3.0)
Y0 = torch.ones(n_v_full).to(gamma.device).float() * a0 * c0
norm = norm.view(-1, 3)
nx, ny, nz = norm[:, 0], norm[:, 1], norm[:, 2]
arrH = []
arrH.append(Y0)
arrH.append(-a1 * c1 * ny)
arrH.append(a1 * c1 * nz)
arrH.append(-a1 * c1 * nx)
arrH.append(a2 * c2 * nx * ny)
arrH.append(-a2 * c2 * ny * nz)
arrH.append(a2 * c2 * d0 * (3 * nz.pow(2) - 1))
arrH.append(-a2 * c2 * nx * nz)
arrH.append(a2 * c2 * 0.5 * (nx.pow(2) - ny.pow(2)))
H = torch.stack(arrH, 1)
Y = H.view(n_b, num_vertex, 9)
lighting = Y.bmm(gamma)
face_color = face_texture * lighting
return face_color
def forward(self, rott_geometry, texture, diffuse_sh):
face_normal = self.compute_normal(rott_geometry)
face_color = self.Illumination_layer(texture, face_normal, diffuse_sh)
face_color = TexturesVertex(face_color)
mesh = Meshes(
rott_geometry,
self.tris.float().repeat(rott_geometry.shape[0], 1, 1),
face_color,
)
rendered_img = self.renderer(mesh)
rendered_img = torch.clamp(rendered_img, 0, 255)
return rendered_img
|