File size: 2,234 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
'''
根据现有HuggingFace的LLM的调用方式写一个模板
注意一下是否调用方式类似,如果不类似,需要修改里面的推理代码
支持:Qwen,ChatLLM等
'''
from transformers import AutoModelForCausalLM, AutoTokenizer

class ChatGLM:
    def __init__(self, mode='offline', model_path = 'THUDM/chatglm3-6b'):
        self.mode = mode
        self.model, self.tokenizer = self.init_model(model_path)
        self.history = None
        assert self.mode == 'offline', "ChatGLM只支持离线模式"
    
    def init_model(self, model_path):
        model = AutoModelForCausalLM.from_pretrained(model_path, 
                                                     device_map="auto", 
                                                     trust_remote_code=True).eval()
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        return model, tokenizer   
    
    def generate(self, prompt, system_prompt=""):
        if self.mode != 'api':
            try:
                # 注意这里的history是个list,每次调用都会把prompt和response都放进去
                # 如果使用,查看对应的方法是否类似,这里是问答的重要部份,这里正确,基本就正确了
                response, self.history = self.model.chat(self.tokenizer, prompt, history=self.history)
                return response
            except Exception as e:
                print(e)
                return "对不起,你的请求出错了,请再次尝试。\nSorry, your request has encountered an error. Please try again.\n"
        else:
            return self.predict_api(prompt)
    
    def predict_api(self, prompt):
        '''暂时不写api版本,与Linly-api相类似,感兴趣可以实现一下'''
        pass 
    
    def chat(self, system_prompt, message):
        response = self.generate(message, system_prompt)
        self.history.append((message, response))
        return response, self.history
    
    def clear_history(self):
        self.history = []

def test():
    llm = ChatGLM(mode='offline',model_path='THUDM/chatglm3-6b')
    answer = llm.generate("如何应对压力?")
    print(answer)

if __name__ == '__main__':
    test()