File size: 10,485 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""This script defines the visualizer for Deep3DFaceRecon_pytorch
"""

import numpy as np
import os
import sys
import ntpath
import time
from . import util, html
from subprocess import Popen, PIPE
from torch.utils.tensorboard import SummaryWriter

def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
    """Save images to the disk.

    Parameters:
        webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
        visuals (OrderedDict)    -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
        image_path (str)         -- the string is used to create image paths
        aspect_ratio (float)     -- the aspect ratio of saved images
        width (int)              -- the images will be resized to width x width

    This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
    """
    image_dir = webpage.get_image_dir()
    short_path = ntpath.basename(image_path[0])
    name = os.path.splitext(short_path)[0]

    webpage.add_header(name)
    ims, txts, links = [], [], []

    for label, im_data in visuals.items():
        im = util.tensor2im(im_data)
        image_name = '%s/%s.png' % (label, name)
        os.makedirs(os.path.join(image_dir, label), exist_ok=True)
        save_path = os.path.join(image_dir, image_name)
        util.save_image(im, save_path, aspect_ratio=aspect_ratio)
        ims.append(image_name)
        txts.append(label)
        links.append(image_name)
    webpage.add_images(ims, txts, links, width=width)


class Visualizer():
    """This class includes several functions that can display/save images and print/save logging information.

    It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
    """

    def __init__(self, opt):
        """Initialize the Visualizer class

        Parameters:
            opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
        Step 1: Cache the training/test options
        Step 2: create a tensorboard writer
        Step 3: create an HTML object for saveing HTML filters
        Step 4: create a logging file to store training losses
        """
        self.opt = opt  # cache the option
        self.use_html = opt.isTrain and not opt.no_html
        self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name))
        self.win_size = opt.display_winsize
        self.name = opt.name
        self.saved = False
        if self.use_html:  # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        # create a logging file to store training losses
        self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)

    def reset(self):
        """Reset the self.saved status"""
        self.saved = False


    def display_current_results(self, visuals, total_iters, epoch, save_result):
        """Display current results on tensorboad; save current results to an HTML file.

        Parameters:
            visuals (OrderedDict) - - dictionary of images to display or save
            total_iters (int) -- total iterations
            epoch (int) - - the current epoch
            save_result (bool) - - if save the current results to an HTML file
        """
        for label, image in visuals.items():
            self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC')

        if self.use_html and (save_result or not self.saved):  # save images to an HTML file if they haven't been saved.
            self.saved = True
            # save images to the disk
            for label, image in visuals.items():
                image_numpy = util.tensor2im(image)
                img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
                util.save_image(image_numpy, img_path)

            # update website
            webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0)
            for n in range(epoch, 0, -1):
                webpage.add_header('epoch [%d]' % n)
                ims, txts, links = [], [], []

                for label, image_numpy in visuals.items():
                    image_numpy = util.tensor2im(image)
                    img_path = 'epoch%.3d_%s.png' % (n, label)
                    ims.append(img_path)
                    txts.append(label)
                    links.append(img_path)
                webpage.add_images(ims, txts, links, width=self.win_size)
            webpage.save()

    def plot_current_losses(self, total_iters, losses):
        # G_loss_collection = {}
        # D_loss_collection = {}
        # for name, value in losses.items():
        #     if 'G' in name or 'NCE' in name or 'idt' in name:
        #         G_loss_collection[name] = value
        #     else:
        #         D_loss_collection[name] = value
        # self.writer.add_scalars('G_collec', G_loss_collection, total_iters)
        # self.writer.add_scalars('D_collec', D_loss_collection, total_iters)
        for name, value in losses.items():
            self.writer.add_scalar(name, value, total_iters)

    # losses: same format as |losses| of plot_current_losses
    def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
        """print current losses on console; also save the losses to the disk

        Parameters:
            epoch (int) -- current epoch
            iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
            losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
            t_comp (float) -- computational time per data point (normalized by batch_size)
            t_data (float) -- data loading time per data point (normalized by batch_size)
        """
        message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)  # print the message
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)  # save the message


class MyVisualizer:
    def __init__(self, opt):
        """Initialize the Visualizer class

        Parameters:
            opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
        Step 1: Cache the training/test options
        Step 2: create a tensorboard writer
        Step 3: create an HTML object for saveing HTML filters
        Step 4: create a logging file to store training losses
        """
        self.opt = opt  # cache the optio
        self.name = opt.name
        self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results')
        
        if opt.phase != 'test':
            self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs'))
            # create a logging file to store training losses
            self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
            with open(self.log_name, "a") as log_file:
                now = time.strftime("%c")
                log_file.write('================ Training Loss (%s) ================\n' % now)


    def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None,
            add_image=True):
        """Display current results on tensorboad; save current results to an HTML file.

        Parameters:
            visuals (OrderedDict) - - dictionary of images to display or save
            total_iters (int) -- total iterations
            epoch (int) - - the current epoch
            dataset (str) - - 'train' or 'val' or 'test'
        """
        # if (not add_image) and (not save_results): return
        
        for label, image in visuals.items():
            for i in range(image.shape[0]):
                image_numpy = util.tensor2im(image[i])
                if add_image:
                    self.writer.add_image(label + '%s_%02d'%(dataset, i + count),
                            image_numpy, total_iters, dataformats='HWC')

                if save_results:
                    save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters))
                    if not os.path.isdir(save_path):
                        os.makedirs(save_path)

                    if name is not None:
                        img_path = os.path.join(save_path, '%s.png' % name)
                    else:
                        img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count))
                    util.save_image(image_numpy, img_path)


    def plot_current_losses(self, total_iters, losses, dataset='train'):
        for name, value in losses.items():
            self.writer.add_scalar(name + '/%s'%dataset, value, total_iters)

    # losses: same format as |losses| of plot_current_losses
    def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'):
        """print current losses on console; also save the losses to the disk

        Parameters:
            epoch (int) -- current epoch
            iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
            losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
            t_comp (float) -- computational time per data point (normalized by batch_size)
            t_data (float) -- data loading time per data point (normalized by batch_size)
        """
        message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (
            dataset, epoch, iters, t_comp, t_data)
        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)

        print(message)  # print the message
        with open(self.log_name, "a") as log_file:
            log_file.write('%s\n' % message)  # save the message