File size: 28,300 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
'''
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
'''
import os, re, logging
import LangSegment
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
import pdb

if os.path.exists("./gweight.txt"):
    with open("./gweight.txt", 'r', encoding="utf-8") as file:
        gweight_data = file.read()
        gpt_path = os.environ.get(
            "gpt_path", gweight_data)
else:
    gpt_path = os.environ.get(
        "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")

if os.path.exists("./sweight.txt"):
    with open("./sweight.txt", 'r', encoding="utf-8") as file:
        sweight_data = file.read()
        sovits_path = os.environ.get("sovits_path", sweight_data)
else:
    sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
# gpt_path = os.environ.get(
#     "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
# )
# sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
cnhubert_base_path = os.environ.get(
    "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
)
bert_path = os.environ.get(
    "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
)
infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True"))
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
import librosa, torch
from feature_extractor import cnhubert

cnhubert.cnhubert_base_path = cnhubert_base_path

from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
from tools.i18n.i18n import I18nAuto

i18n = I18nAuto()

os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'  # 确保直接启动推理UI时也能够设置。

if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T


class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)

# 初始化引导音频列表
def init_wav_list(sovits_path):
    wav_path = "./output/slicer_opt"
    match = re.search(r'([a-zA-Z]+)_e\d+_s\d+\.pth',sovits_path)
    if match:
        result = match.group(1)
        wav_path = f"./logs/{result}/5-wav32k/"

    res = ["请选择参考音频"]

    # 遍历目录
    for file_path in os.listdir(wav_path):
        # 检查当前file_path是否为文件
        if os.path.isfile(os.path.join(wav_path, file_path)):
            # 将文件名添加到列表中
            res.append(file_path)
    # print(res)
    return res

reference_wavs = init_wav_list(sovits_path)


# 切换参考音频
def change_wav(audio_name):
    wav_path = f"./output/slicer_opt/{audio_name}"
    match = re.search(r'([a-zA-Z]+)_e\d+_s\d+\.pth',sovits_path)
    if match:
        result = match.group(1)
        wav_path = f"./logs/{result}/5-wav32k/{audio_name}"

    return wav_path

def change_sovits_weights(sovits_path):
    global vq_model, hps
    dict_s2 = torch.load(sovits_path, map_location="cpu")
    hps = dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    vq_model = SynthesizerTrn(
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model
    )
    if ("pretrained" not in sovits_path):
        del vq_model.enc_q
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
    with open("./sweight.txt", "w", encoding="utf-8") as f:
        f.write(sovits_path)
    return init_wav_list(sovits_path)


change_sovits_weights(sovits_path)


def change_gpt_weights(gpt_path):
    global hz, max_sec, t2s_model, config
    hz = 50
    dict_s1 = torch.load(gpt_path, map_location="cpu")
    config = dict_s1["config"]
    max_sec = config["data"]["max_sec"]
    t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if is_half == True:
        t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    total = sum([param.nelement() for param in t2s_model.parameters()])
    print("Number of parameter: %.2fM" % (total / 1e6))
    with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)


change_gpt_weights(gpt_path)


def get_spepc(hps, filename):
    audio = load_audio(filename, int(hps.data.sampling_rate))
    audio = torch.FloatTensor(audio)
    audio_norm = audio
    audio_norm = audio_norm.unsqueeze(0)
    spec = spectrogram_torch(
        audio_norm,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    return spec


dict_language = {
    i18n("中文"): "all_zh",#全部按中文识别
    i18n("英文"): "en",#全部按英文识别#######不变
    i18n("日文"): "all_ja",#全部按日文识别
    i18n("中英混合"): "zh",#按中英混合识别####不变
    i18n("日英混合"): "ja",#按日英混合识别####不变
    i18n("多语种混合"): "auto",#多语种启动切分识别语种
}


def splite_en_inf(sentence, language):
    pattern = re.compile(r'[a-zA-Z ]+')
    textlist = []
    langlist = []
    pos = 0
    for match in pattern.finditer(sentence):
        start, end = match.span()
        if start > pos:
            textlist.append(sentence[pos:start])
            langlist.append(language)
        textlist.append(sentence[start:end])
        langlist.append("en")
        pos = end
    if pos < len(sentence):
        textlist.append(sentence[pos:])
        langlist.append(language)
    # Merge punctuation into previous word
    for i in range(len(textlist)-1, 0, -1):
        if re.match(r'^[\W_]+$', textlist[i]):
            textlist[i-1] += textlist[i]
            del textlist[i]
            del langlist[i]
    # Merge consecutive words with the same language tag
    i = 0
    while i < len(langlist) - 1:
        if langlist[i] == langlist[i+1]:
            textlist[i] += textlist[i+1]
            del textlist[i+1]
            del langlist[i+1]
        else:
            i += 1

    return textlist, langlist


def clean_text_inf(text, language):
    phones, word2ph, norm_text = clean_text(text, language.replace("all_",""))
    phones = cleaned_text_to_sequence(phones)
    return phones, word2ph, norm_text

dtype=torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
    language=language.replace("all_","")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half == True else torch.float32,
        ).to(device)

    return bert


def nonen_clean_text_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    phones_list = []
    word2ph_list = []
    norm_text_list = []
    for i in range(len(textlist)):
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
        phones_list.append(phones)
        if lang == "zh":
            word2ph_list.append(word2ph)
        norm_text_list.append(norm_text)
    print(word2ph_list)
    phones = sum(phones_list, [])
    word2ph = sum(word2ph_list, [])
    norm_text = ' '.join(norm_text_list)

    return phones, word2ph, norm_text


def nonen_get_bert_inf(text, language):
    if(language!="auto"):
        textlist, langlist = splite_en_inf(text, language)
    else:
        textlist=[]
        langlist=[]
        for tmp in LangSegment.getTexts(text):
            langlist.append(tmp["lang"])
            textlist.append(tmp["text"])
    print(textlist)
    print(langlist)
    bert_list = []
    for i in range(len(textlist)):
        text = textlist[i]
        lang = langlist[i]
        phones, word2ph, norm_text = clean_text_inf(text, lang)
        bert = get_bert_inf(phones, word2ph, norm_text, lang)
        bert_list.append(bert)
    bert = torch.cat(bert_list, dim=1)

    return bert


splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }


def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text


def get_cleaned_text_fianl(text,language):
    if language in {"en","all_zh","all_ja"}:
        phones, word2ph, norm_text = clean_text_inf(text, language)
    elif language in {"zh", "ja","auto"}:
        phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
    return phones, word2ph, norm_text

def get_bert_final(phones, word2ph, norm_text,language,device):
    if text_language == "en":
        bert = get_bert_inf(phones, word2ph, norm_text, text_language)
    elif text_language in {"zh", "ja","auto"}:
        bert = nonen_get_bert_inf(text, text_language)
    elif text_language == "all_zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)
    else:
        bert = torch.zeros((1024, len(phones))).to(device)
    return bert

def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切")):
    t0 = ttime()
    prompt_text = prompt_text.strip("\n")
    if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
    text = text.strip("\n")
    if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
    print(i18n("实际输入的参考文本:"), prompt_text)
    print(i18n("实际输入的目标文本:"), text)
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * 0.3),
        dtype=np.float16 if is_half == True else np.float32,
    )
    with torch.no_grad():
        wav16k, sr = librosa.load(ref_wav_path, sr=16000)
        if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
            raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
        wav16k = torch.from_numpy(wav16k)
        zero_wav_torch = torch.from_numpy(zero_wav)
        if is_half == True:
            wav16k = wav16k.half().to(device)
            zero_wav_torch = zero_wav_torch.half().to(device)
        else:
            wav16k = wav16k.to(device)
            zero_wav_torch = zero_wav_torch.to(device)
        wav16k = torch.cat([wav16k, zero_wav_torch])
        ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
            "last_hidden_state"
        ].transpose(
            1, 2
        )  # .float()
        codes = vq_model.extract_latent(ssl_content)
        prompt_semantic = codes[0, 0]
    t1 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]

    phones1, word2ph1, norm_text1=get_cleaned_text_fianl(prompt_text, prompt_language)

    if (how_to_cut == i18n("凑四句一切")):
        text = cut1(text)
    elif (how_to_cut == i18n("凑50字一切")):
        text = cut2(text)
    elif (how_to_cut == i18n("按中文句号。切")):
        text = cut3(text)
    elif (how_to_cut == i18n("按英文句号.切")):
        text = cut4(text)
    elif (how_to_cut == i18n("按标点符号切")):
        text = cut5(text)
    text = text.replace("\n\n", "\n").replace("\n\n", "\n").replace("\n\n", "\n")
    print(i18n("实际输入的目标文本(切句后):"), text)
    texts = text.split("\n")
    audio_opt = []
    bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)

    for text in texts:
        # 解决输入目标文本的空行导致报错的问题
        if (len(text.strip()) == 0):
            continue
        if (text[-1] not in splits): text += "。" if text_language != "en" else "."
        print(i18n("实际输入的目标文本(每句):"), text)
        phones2, word2ph2, norm_text2 = get_cleaned_text_fianl(text, text_language)
        bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)

        bert = torch.cat([bert1, bert2], 1)

        all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
        prompt = prompt_semantic.unsqueeze(0).to(device)
        t2 = ttime()
        with torch.no_grad():
            # pred_semantic = t2s_model.model.infer(
            pred_semantic, idx = t2s_model.model.infer_panel(
                all_phoneme_ids,
                all_phoneme_len,
                prompt,
                bert,
                # prompt_phone_len=ph_offset,
                top_k=config["inference"]["top_k"],
                early_stop_num=hz * max_sec,
            )
        t3 = ttime()
        # print(pred_semantic.shape,idx)
        pred_semantic = pred_semantic[:, -idx:].unsqueeze(
            0
        )  # .unsqueeze(0)#mq要多unsqueeze一次
        refer = get_spepc(hps, ref_wav_path)  # .to(device)
        if is_half == True:
            refer = refer.half().to(device)
        else:
            refer = refer.to(device)
        # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
        audio = (
            vq_model.decode(
                pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
            )
                .detach()
                .cpu()
                .numpy()[0, 0]
        )  ###试试重建不带上prompt部分
        max_audio=np.abs(audio).max()#简单防止16bit爆音
        if max_audio>1:audio/=max_audio
        audio_opt.append(audio)
        audio_opt.append(zero_wav)
        t4 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
    yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
        np.int16
    )


def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
    else:
        opts = [inp]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip("。").split("。")])


def cut4(inp):
    inp = inp.strip("\n")
    return "\n".join(["%s" % item for item in inp.strip(".").split(".")])


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
def cut5(inp):
    # if not re.search(r'[^\w\s]', inp[-1]):
    # inp += '。'
    inp = inp.strip("\n")
    punds = r'[,.;?!、,。?!;:]'
    items = re.split(f'({punds})', inp)
    items = ["".join(group) for group in zip(items[::2], items[1::2])]
    opt = "\n".join(items)
    return opt


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split('(\d+)', s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts


def change_choices():
    SoVITS_names, GPT_names = get_weights_names()
    return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}


pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
SoVITS_weight_root = "SoVITS_weights"
GPT_weight_root = "GPT_weights"
os.makedirs(SoVITS_weight_root, exist_ok=True)
os.makedirs(GPT_weight_root, exist_ok=True)


def get_weights_names():
    SoVITS_names = [pretrained_sovits_name]
    for name in os.listdir(SoVITS_weight_root):
        if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
    GPT_names = [pretrained_gpt_name]
    for name in os.listdir(GPT_weight_root):
        if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
    return SoVITS_names, GPT_names


SoVITS_names, GPT_names = get_weights_names()

#region 输出音频历史记录相关
output_history =[]
history_max_num = 20

def sync_output_history_to_checkbox_audio():
    checkbox_result = []
    audio_result = []
    for item in output_history:
        label = item['label']
        if len(label)>15:
            label=label[:15]+'...'
        checkbox_result.append(gr.update(label=label,value=False))
        audio_result.append(gr.Audio.update(value=item['value']))
    for _ in range(len(audio_result),history_max_num):
        checkbox_result.append(gr.Checkbox.update(label="",value=False))
        audio_result.append(gr.Audio.update(value = None))
    return [*checkbox_result,*audio_result]

def add_to_history(audio,input_text):
    if(audio is None or audio[1] is not None):
        if len(output_history) == history_max_num:
            output_history.pop()
        output_history.insert(0,{'value':audio,'label':input_text})

    return [*sync_output_history_to_checkbox_audio()]

def clear_history():
    global output_history
    output_history = []
    checkbox_result = []
    audio_result = []
    for _ in range(history_max_num):
        checkbox_result.append(gr.Checkbox.update(label="",value=False))
        audio_result.append(gr.Audio.update(value = None))
    return [*checkbox_result,*audio_result]

def shown_audio_num_change(audio_num):
    audio_num = int(audio_num)
    audio_result = []
    checkbox_result = []
    for _ in range(audio_num):
        audio_result.append(gr.Audio.update(visible=True))
        checkbox_result.append(gr.update(visible=True))
    for _ in range(audio_num,history_max_num):
        audio_result.append(gr.Audio.update(visible=False))
        checkbox_result.append(gr.update(visible=False))
    return [*checkbox_result,*audio_result]

def delete_selected_history(*selected_list):
    global output_history
    print(f"!!!!!!!!{selected_list}")
    for i in reversed(range(len(output_history))):
        if(selected_list[i]):
            output_history.pop(i)
    print(f"!!!!{output_history}")
    return [*sync_output_history_to_checkbox_audio()]

with gr.Blocks(title="GPT-SoVITS WebUI") as app:
    gr.Markdown(
        value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
    )
    with gr.Group():
        gr.Markdown(value=i18n("模型切换"))
        with gr.Row():
            GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
            SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
            wavs_dropdown = gr.Dropdown(label=i18n("参考音频列表"), choices=reference_wavs,value="请选择参考音频",interactive=True)
            refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
            refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
            # SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
            SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [wavs_dropdown])
            GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
        gr.Markdown(value=i18n("*请上传并填写参考信息"))
        with gr.Row():
            inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
            prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
            prompt_language = gr.Dropdown(
                label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文")], value=i18n("中文")
            )
            wavs_dropdown.change(change_wav,[wavs_dropdown],[inp_ref])
        gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。"))
        with gr.Row():
            text = gr.Textbox(label=i18n("需要合成的文本"), value="")
            text_language = gr.Dropdown(
                label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
            )
            how_to_cut = gr.Radio(
                label=i18n("怎么切"),
                choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
                value=i18n("凑四句一切"),
                interactive=True,
            )
            inference_button = gr.Button(i18n("合成语音"), variant="primary")
            output = gr.Audio(label=i18n("输出的语音"))

        inference_button.click(
            get_tts_wav,
            [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut],
            [output],
        )
        history_audio = []
        history_checkbox = []
        with gr.Accordion("生成历史"):
            with gr.Row():
                shown_audio_num = gr.Slider(1,20,history_max_num,step=1,interactive=True,label="记录显示数量")
                add_history_button = gr.Button("添加当前音频记录",variant="primary")
                delete_select_history_button = gr.Button("删除选择的记录")
                clear_history_button = gr.Button("清空记录")
            index=0
            while(index<history_max_num):
                index+=5
                with gr.Row():
                    for _ in range(5):
                        with gr.Group():
                            history_checkbox.append(gr.Checkbox(interactive=True,show_label=False,label=""))
                            history_audio.append(gr.Audio(label=""))

            shown_audio_num.change(shown_audio_num_change,[shown_audio_num],[*history_checkbox,*history_audio])
            add_history_button.click(add_to_history,[output,text],[*history_checkbox,*history_audio])
            delete_select_history_button.click(delete_selected_history,[*history_checkbox],[*history_checkbox,*history_audio])
            clear_history_button.click(clear_history,outputs=[*history_checkbox,*history_audio])
            
        gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
        with gr.Row():
            text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
            button1 = gr.Button(i18n("凑四句一切"), variant="primary")
            button2 = gr.Button(i18n("凑50字一切"), variant="primary")
            button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
            button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
            button5 = gr.Button(i18n("按标点符号切"), variant="primary")
            text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
            button1.click(cut1, [text_inp], [text_opt])
            button2.click(cut2, [text_inp], [text_opt])
            button3.click(cut3, [text_inp], [text_opt])
            button4.click(cut4, [text_inp], [text_opt])
            button5.click(cut5, [text_inp], [text_opt])
        gr.Markdown(value=i18n("后续将支持混合语种编码文本输入。"))

app.queue(concurrency_count=511, max_size=1022).launch(
    server_name="0.0.0.0",
    inbrowser=True,
    share=is_share,
    server_port=infer_ttswebui,
    quiet=True,
)