File size: 6,055 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from glob import glob
import os

class HParams:
	def __init__(self, **kwargs):
		self.data = {}

		for key, value in kwargs.items():
			self.data[key] = value

	def __getattr__(self, key):
		if key not in self.data:
			raise AttributeError("'HParams' object has no attribute %s" % key)
		return self.data[key]

	def set_hparam(self, key, value):
		self.data[key] = value


# Default hyperparameters
hparams = HParams(
	num_mels=80,  # Number of mel-spectrogram channels and local conditioning dimensionality
	#  network
	rescale=True,  # Whether to rescale audio prior to preprocessing
	rescaling_max=0.9,  # Rescaling value
	
	# Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
	# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
	# Does not work if n_ffit is not multiple of hop_size!!
	use_lws=False,
	
	n_fft=800,  # Extra window size is filled with 0 paddings to match this parameter
	hop_size=200,  # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
	win_size=800,  # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
	sample_rate=16000,  # 16000Hz (corresponding to librispeech) (sox --i <filename>)
	
	frame_shift_ms=None,  # Can replace hop_size parameter. (Recommended: 12.5)
	
	# Mel and Linear spectrograms normalization/scaling and clipping
	signal_normalization=True,
	# Whether to normalize mel spectrograms to some predefined range (following below parameters)
	allow_clipping_in_normalization=True,  # Only relevant if mel_normalization = True
	symmetric_mels=True,
	# Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, 
	# faster and cleaner convergence)
	max_abs_value=4.,
	# max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not 
	# be too big to avoid gradient explosion, 
	# not too small for fast convergence)
	# Contribution by @begeekmyfriend
	# Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude 
	# levels. Also allows for better G&L phase reconstruction)
	preemphasize=True,  # whether to apply filter
	preemphasis=0.97,  # filter coefficient.
	
	# Limits
	min_level_db=-100,
	ref_level_db=20,
	fmin=55,
	# Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To 
	# test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
	fmax=7600,  # To be increased/reduced depending on data.

	###################### Our training parameters #################################
	img_size=96,
	fps=25,
	
	batch_size=16,
	initial_learning_rate=1e-4,
	nepochs=300000,  ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
	num_workers=20,
	checkpoint_interval=3000,
	eval_interval=3000,
	writer_interval=300,
    save_optimizer_state=True,

    syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. 
	syncnet_batch_size=64,
	syncnet_lr=1e-4,
	syncnet_eval_interval=1000,
	syncnet_checkpoint_interval=10000,

	disc_wt=0.07,
	disc_initial_learning_rate=1e-4,
)



# Default hyperparameters
hparamsdebug = HParams(
	num_mels=80,  # Number of mel-spectrogram channels and local conditioning dimensionality
	#  network
	rescale=True,  # Whether to rescale audio prior to preprocessing
	rescaling_max=0.9,  # Rescaling value
	
	# Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
	# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
	# Does not work if n_ffit is not multiple of hop_size!!
	use_lws=False,
	
	n_fft=800,  # Extra window size is filled with 0 paddings to match this parameter
	hop_size=200,  # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
	win_size=800,  # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
	sample_rate=16000,  # 16000Hz (corresponding to librispeech) (sox --i <filename>)
	
	frame_shift_ms=None,  # Can replace hop_size parameter. (Recommended: 12.5)
	
	# Mel and Linear spectrograms normalization/scaling and clipping
	signal_normalization=True,
	# Whether to normalize mel spectrograms to some predefined range (following below parameters)
	allow_clipping_in_normalization=True,  # Only relevant if mel_normalization = True
	symmetric_mels=True,
	# Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, 
	# faster and cleaner convergence)
	max_abs_value=4.,
	# max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not 
	# be too big to avoid gradient explosion, 
	# not too small for fast convergence)
	# Contribution by @begeekmyfriend
	# Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude 
	# levels. Also allows for better G&L phase reconstruction)
	preemphasize=True,  # whether to apply filter
	preemphasis=0.97,  # filter coefficient.
	
	# Limits
	min_level_db=-100,
	ref_level_db=20,
	fmin=55,
	# Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To 
	# test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
	fmax=7600,  # To be increased/reduced depending on data.

	###################### Our training parameters #################################
	img_size=96,
	fps=25,
	
	batch_size=2,
	initial_learning_rate=1e-3,
	nepochs=100000,  ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
	num_workers=0,
	checkpoint_interval=10000,
	eval_interval=10,
	writer_interval=5,
    save_optimizer_state=True,

    syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. 
	syncnet_batch_size=64,
	syncnet_lr=1e-4,
	syncnet_eval_interval=10000,
	syncnet_checkpoint_interval=10000,

	disc_wt=0.07,
	disc_initial_learning_rate=1e-4,
)


def hparams_debug_string():
	values = hparams.values()
	hp = ["  %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
	return "Hyperparameters:\n" + "\n".join(hp)