Spaces:
Runtime error
Runtime error
add hash_oauth and add ollama@hash_oauth instance
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import shutil
|
3 |
import subprocess
|
4 |
import signal
|
|
|
5 |
|
6 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
7 |
import gradio as gr
|
@@ -18,12 +19,45 @@ from textwrap import dedent
|
|
18 |
HOME = os.environ.get("HOME")
|
19 |
# token = os.environ.get("HF_TOKEN")
|
20 |
library_username = os.environ.get("OLLAMA_USERNAME").lower()
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
def ollamafy_model(login, account, model_id, ollama_library_username , ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
24 |
ollama_library_username: library_username | None
|
25 |
if oauth_token.token is None:
|
26 |
raise ValueError("You must be logged in to use Ollamafy")
|
|
|
|
|
27 |
# username = whoami(oauth_token.token)["name"]
|
28 |
model_name = model_id.split('/')[-1]
|
29 |
fp16 = f"{model_name}-fp16.gguf"
|
@@ -88,10 +122,10 @@ def ollamafy_model(login, account, model_id, ollama_library_username , ollama_q_
|
|
88 |
print("Model converted to Ollama successfully!")
|
89 |
|
90 |
if maintainer:
|
91 |
-
ollama_push = f"ollama push {library_username}/{model_name}:{q_method.lower()}"
|
92 |
ollama_rm = f"ollama rm {library_username}/{model_name}:{q_method.lower()}"
|
93 |
else:
|
94 |
-
ollama_push = f"ollama push {library_username}/{ollama_model_name}:{q_method.lower()}"
|
95 |
ollama_rm = f"ollama rm {library_username}/{ollama_model_name}:{q_method.lower()}"
|
96 |
|
97 |
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
|
@@ -118,10 +152,10 @@ def ollamafy_model(login, account, model_id, ollama_library_username , ollama_q_
|
|
118 |
print("Model pushed to Ollama library successfully!")
|
119 |
|
120 |
if maintainer:
|
121 |
-
ollama_push_latest = f"ollama push {library_username}/{model_name}:latest"
|
122 |
ollama_rm_latest = f"ollama rm {library_username}/{model_name}:latest"
|
123 |
else:
|
124 |
-
ollama_push_latest = f"ollama push {library_username}/{ollama_model_name}:latest"
|
125 |
ollama_rm_latest = f"ollama rm {library_username}/{ollama_model_name}:latest"
|
126 |
|
127 |
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True)
|
@@ -154,6 +188,10 @@ with gr.Blocks(css=css) as demo:
|
|
154 |
login = gr.LoginButton(
|
155 |
min_width=250,
|
156 |
)
|
|
|
|
|
|
|
|
|
157 |
|
158 |
model_id = HuggingfaceHubSearch(
|
159 |
label="Hugging Face Hub Model ID",
|
|
|
2 |
import shutil
|
3 |
import subprocess
|
4 |
import signal
|
5 |
+
import hashlib
|
6 |
|
7 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
8 |
import gradio as gr
|
|
|
19 |
HOME = os.environ.get("HOME")
|
20 |
# token = os.environ.get("HF_TOKEN")
|
21 |
library_username = os.environ.get("OLLAMA_USERNAME").lower()
|
22 |
+
|
23 |
+
ollama_start = f"systemctl ollama start"
|
24 |
+
ollama_stop = f"systemctl ollama stop"
|
25 |
+
|
26 |
+
|
27 |
+
def regenerate_pubkey(oauth_token: gr.OAuthToken | None):
|
28 |
+
|
29 |
+
if oauth_token.token is None:
|
30 |
+
raise ValueError("You must be logged in to use Ollamafy")
|
31 |
+
hash_oauth = hashlib.sha256(unicode_string.encode(oauth_token)).hexdigest()
|
32 |
+
ollama_pubkey = open(f"{HOME}/.ollama/{hash_oauth}/id_ed25519.pub", "r")
|
33 |
+
delete_ihome = f"rm -Rf {HOME}/{hash_oauth}"
|
34 |
+
ollama_istart = f"systemctl ollama@{hash_oauth} start"
|
35 |
+
ollama_istop = f"systemctl ollama@{hash_oauth} stop"
|
36 |
+
|
37 |
+
result = subprocess.run(ollama_stop, shell=True, capture_output=True)
|
38 |
+
print(result)
|
39 |
+
if result.returncode != 0:
|
40 |
+
raise Exception(f"Error stoppping Ollama {result.stderr}")
|
41 |
+
print("Ollama stopped successfully!")
|
42 |
+
|
43 |
+
result = subprocess.run(delete_ihome, shell=True, capture_output=True)
|
44 |
+
print(result)
|
45 |
+
if result.returncode != 0:
|
46 |
+
raise Exception(f"Error removing Ollama HOME folder {result.stderr}")
|
47 |
+
print("Ollama HOME fodler removed successfully!")
|
48 |
+
|
49 |
+
result = subprocess.run(ollama_start, shell=True, capture_output=True)
|
50 |
+
print(result)
|
51 |
+
if result.returncode != 0:
|
52 |
+
raise Exception(f"Error starting Ollama {result.stderr}")
|
53 |
+
print("Ollama started successfully!")
|
54 |
|
55 |
def ollamafy_model(login, account, model_id, ollama_library_username , ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
|
56 |
ollama_library_username: library_username | None
|
57 |
if oauth_token.token is None:
|
58 |
raise ValueError("You must be logged in to use Ollamafy")
|
59 |
+
hash_oauth = hashlib.sha256(unicode_string.encode(oauth_token)).hexdigest()
|
60 |
+
|
61 |
# username = whoami(oauth_token.token)["name"]
|
62 |
model_name = model_id.split('/')[-1]
|
63 |
fp16 = f"{model_name}-fp16.gguf"
|
|
|
122 |
print("Model converted to Ollama successfully!")
|
123 |
|
124 |
if maintainer:
|
125 |
+
ollama_push = f"ollama@{hash_oauth} push {library_username}/{model_name}:{q_method.lower()}"
|
126 |
ollama_rm = f"ollama rm {library_username}/{model_name}:{q_method.lower()}"
|
127 |
else:
|
128 |
+
ollama_push = f"ollama@{hash_oauth} push {library_username}/{ollama_model_name}:{q_method.lower()}"
|
129 |
ollama_rm = f"ollama rm {library_username}/{ollama_model_name}:{q_method.lower()}"
|
130 |
|
131 |
ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
|
|
|
152 |
print("Model pushed to Ollama library successfully!")
|
153 |
|
154 |
if maintainer:
|
155 |
+
ollama_push_latest = f"ollama@{hash_oauth} push {library_username}/{model_name}:latest"
|
156 |
ollama_rm_latest = f"ollama rm {library_username}/{model_name}:latest"
|
157 |
else:
|
158 |
+
ollama_push_latest = f"ollama@{hash_oauth} push {library_username}/{ollama_model_name}:latest"
|
159 |
ollama_rm_latest = f"ollama rm {library_username}/{ollama_model_name}:latest"
|
160 |
|
161 |
ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True)
|
|
|
188 |
login = gr.LoginButton(
|
189 |
min_width=250,
|
190 |
)
|
191 |
+
generate_pubkey gr.Button (
|
192 |
+
value=regenerate_pubkey(),
|
193 |
+
min_width=250,
|
194 |
+
)
|
195 |
|
196 |
model_id = HuggingfaceHubSearch(
|
197 |
label="Hugging Face Hub Model ID",
|