Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,18 @@ from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffus
|
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
14 |
|
15 |
help_text = """
|
16 |
To optimize image results:
|
@@ -56,28 +67,11 @@ if not torch.cuda.is_available():
|
|
56 |
|
57 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
58 |
|
59 |
-
|
60 |
-
# Image Generator
|
61 |
-
if torch.cuda.is_available():
|
62 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
63 |
-
"fluently/Fluently-XL-Final",
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
use_safetensors=True,
|
66 |
-
)
|
67 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
68 |
-
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
69 |
-
pipe.set_adapters("dalle")
|
70 |
-
|
71 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
72 |
-
if randomize_seed:
|
73 |
-
seed = random.randint(0, 999999)
|
74 |
-
return seed
|
75 |
-
|
76 |
# Generator
|
77 |
@spaces.GPU(duration=30, queue=False)
|
78 |
def king(type = "Image Generation",
|
79 |
input_image = None,
|
80 |
-
instruction: str
|
81 |
steps: int = 8,
|
82 |
randomize_seed: bool = False,
|
83 |
seed: int = 25,
|
@@ -90,7 +84,8 @@ def king(type = "Image Generation",
|
|
90 |
progress=gr.Progress(track_tqdm=True),
|
91 |
):
|
92 |
if type=="Image Editing" :
|
93 |
-
|
|
|
94 |
text_cfg_scale = text_cfg_scale
|
95 |
image_cfg_scale = image_cfg_scale
|
96 |
input_image = input_image
|
@@ -103,23 +98,18 @@ def king(type = "Image Generation",
|
|
103 |
num_inference_steps=steps, generator=generator).images[0]
|
104 |
return seed, output_image
|
105 |
else :
|
106 |
-
|
107 |
-
|
108 |
-
generator = torch.Generator().manual_seed(seed)
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
"output_type":"pil",
|
119 |
-
}
|
120 |
-
|
121 |
-
output_image = pipe(**options).images[0]
|
122 |
-
return seed, output_image
|
123 |
|
124 |
# Prompt classifier
|
125 |
def response(instruction, input_image=None):
|
|
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
+
import gradio as gr
|
14 |
+
import numpy as np
|
15 |
+
import random
|
16 |
+
import torch
|
17 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
18 |
+
import spaces
|
19 |
+
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
dtype = torch.float16
|
22 |
|
23 |
+
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
24 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
|
25 |
|
26 |
help_text = """
|
27 |
To optimize image results:
|
|
|
67 |
|
68 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Generator
|
71 |
@spaces.GPU(duration=30, queue=False)
|
72 |
def king(type = "Image Generation",
|
73 |
input_image = None,
|
74 |
+
instruction: str ,
|
75 |
steps: int = 8,
|
76 |
randomize_seed: bool = False,
|
77 |
seed: int = 25,
|
|
|
84 |
progress=gr.Progress(track_tqdm=True),
|
85 |
):
|
86 |
if type=="Image Editing" :
|
87 |
+
if randomize_seed:
|
88 |
+
seed = random.randint(0, 99999)
|
89 |
text_cfg_scale = text_cfg_scale
|
90 |
image_cfg_scale = image_cfg_scale
|
91 |
input_image = input_image
|
|
|
98 |
num_inference_steps=steps, generator=generator).images[0]
|
99 |
return seed, output_image
|
100 |
else :
|
101 |
+
if randomize_seed:
|
102 |
+
seed = random.randint(0, 99999)
|
103 |
+
generator = torch.Generator().manual_seed(seed)
|
104 |
+
image = pipe(
|
105 |
+
prompt = prompt,
|
106 |
+
guidance_scale = guidance_scale,
|
107 |
+
num_inference_steps = steps,
|
108 |
+
width = width,
|
109 |
+
height = height,
|
110 |
+
generator = generator
|
111 |
+
).images[0]
|
112 |
+
return seed, image
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Prompt classifier
|
115 |
def response(instruction, input_image=None):
|