umuthopeyildirim
commited on
Commit
·
2c2d3cf
1
Parent(s):
7098dbe
added licenses and readme
Browse files- .DS_Store +0 -0
- LICENSE +43 -0
- README.md +146 -1
- assets/teaser.jpg +0 -0
- assets/teaser1.jpg +0 -0
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
LICENSE
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 ShuweiShao
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
22 |
+
|
23 |
+
MIT License
|
24 |
+
|
25 |
+
Copyright (c) 2024 Umut YILDIRIM <[email protected]>
|
26 |
+
|
27 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
28 |
+
of this software and associated documentation files (the "Software"), to deal
|
29 |
+
in the Software without restriction, including without limitation the rights
|
30 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
31 |
+
copies of the Software, and to permit persons to whom the Software is
|
32 |
+
furnished to do so, subject to the following conditions:
|
33 |
+
|
34 |
+
The above copyright notice and this permission notice shall be included in all
|
35 |
+
copies or substantial portions of the Software.
|
36 |
+
|
37 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
38 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
39 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
40 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
41 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
42 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
43 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -10,4 +10,149 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
<div align="center">
|
14 |
+
|
15 |
+
<h1>IEBins: Iterative Elastic Bins for Monocular Depth Estimation</h1>
|
16 |
+
|
17 |
+
<div>
|
18 |
+
<a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=ecZHSVQAAAAJ' target='_blank'>Shuwei Shao</a><sup>1</sup> 
|
19 |
+
<a target='_blank'>Zhongcai Pei</a><sup>1</sup> 
|
20 |
+
<a target='_blank'>Xingming Wu</a><sup>1</sup> 
|
21 |
+
<a target='_blank'>Zhong Liu</a><sup>1</sup> 
|
22 |
+
<a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=5PoZrcYAAAAJ' target='_blank'>Weihai Chen</a><sup>2</sup> 
|
23 |
+
<a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=LiUX7WQAAAAJ' target='_blank'>Zhengguo Li</a><sup>3</sup>
|
24 |
+
</div>
|
25 |
+
<div>
|
26 |
+
<sup>1</sup>Beihang University, <sup>2</sup>Anhui University, <sup>3</sup>A*STAR
|
27 |
+
</div>
|
28 |
+
|
29 |
+
<div>
|
30 |
+
<h4 align="center">
|
31 |
+
• <a href="https://arxiv.org/abs/2309.14137" target='_blank'>NeurIPS 2023</a> •
|
32 |
+
</h4>
|
33 |
+
</div>
|
34 |
+
|
35 |
+
[![KITTI Benchmark](https://img.shields.io/badge/KITTI%20Benchmark-2nd%20among%20all%20at%20submission%20time-blue)](https://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction)
|
36 |
+
[![Hugging Space Badge](https://img.shields.io/badge/🤗-Open%20In%20Spaces-blue.svg)](umuthopeyildirim/IEBins-Depth-Perception)
|
37 |
+
|
38 |
+
## Abstract
|
39 |
+
|
40 |
+
<div style="text-align:center">
|
41 |
+
<img src="assets/teaser.jpg" width="80%" height="80%">
|
42 |
+
</div>
|
43 |
+
|
44 |
+
</div>
|
45 |
+
<strong>We propose a novel concept of iterative elastic bins for the classification-regression-based MDE. The proposed IEBins aims to search for high-quality depth by progressively optimizing the search range, which involves multiple stages and each stage performs a finer-grained depth search in the target bin on top of its previous stage. To alleviate the possible error accumulation during the iterative process, we utilize a novel elastic target bin to replace the original target bin, the width of which is adjusted elastically based on the depth uncertainty. </strong>
|
46 |
+
|
47 |
+
---
|
48 |
+
|
49 |
+
</div>
|
50 |
+
|
51 |
+
## Installation
|
52 |
+
|
53 |
+
```
|
54 |
+
conda create -n iebins python=3.8
|
55 |
+
conda activate iebins
|
56 |
+
conda install pytorch=1.10.0 torchvision cudatoolkit=11.1
|
57 |
+
pip install matplotlib, tqdm, tensorboardX, timm, mmcv, open3d
|
58 |
+
```
|
59 |
+
|
60 |
+
## Datasets
|
61 |
+
|
62 |
+
You can prepare the datasets KITTI and NYUv2 according to [here](https://github.com/cleinc/bts/tree/master/pytorch) and download the SUN RGB-D dataset from [here](https://rgbd.cs.princeton.edu/), and then modify the data path in the config files to your dataset locations.
|
63 |
+
|
64 |
+
## Training
|
65 |
+
|
66 |
+
First download the pretrained encoder backbone from [here](https://github.com/microsoft/Swin-Transformer), and then modify the pretrain path in the config files. If you want to train the KITTI_Official model, first download the pretrained encoder backbone from [here](https://drive.google.com/file/d/1qjDnMwmEz0k0XWh7GP2aNPGiAjvOPF_5/view?usp=drive_link), which is provided by [MIM](https://github.com/SwinTransformer/MIM-Depth-Estimation).
|
67 |
+
|
68 |
+
Training the NYUv2 model:
|
69 |
+
|
70 |
+
```
|
71 |
+
python iebins/train.py configs/arguments_train_nyu.txt
|
72 |
+
```
|
73 |
+
|
74 |
+
Training the KITTI_Eigen model:
|
75 |
+
|
76 |
+
```
|
77 |
+
python iebins/train.py configs/arguments_train_kittieigen.txt
|
78 |
+
```
|
79 |
+
|
80 |
+
Training the KITTI_Official model:
|
81 |
+
|
82 |
+
```
|
83 |
+
python iebins_kittiofficial/train.py configs/arguments_train_kittiofficial.txt
|
84 |
+
```
|
85 |
+
|
86 |
+
## Evaluation
|
87 |
+
|
88 |
+
Evaluate the NYUv2 model:
|
89 |
+
|
90 |
+
```
|
91 |
+
python iebins/eval.py configs/arguments_eval_nyu.txt
|
92 |
+
```
|
93 |
+
|
94 |
+
Evaluate the NYUv2 model on the SUN RGB-D dataset:
|
95 |
+
|
96 |
+
```
|
97 |
+
python iebins/eval_sun.py configs/arguments_eval_sun.txt
|
98 |
+
```
|
99 |
+
|
100 |
+
Evaluate the KITTI_Eigen model:
|
101 |
+
|
102 |
+
```
|
103 |
+
python iebins/eval.py configs/arguments_eval_kittieigen.txt
|
104 |
+
```
|
105 |
+
|
106 |
+
To generate KITTI Online evaluation data for the KITTI_Official model:
|
107 |
+
|
108 |
+
```
|
109 |
+
python iebins_kittiofficial/test.py --data_path path to dataset --filenames_file ./data_splits/kitti_official_test.txt --max_depth 80 --checkpoint_path path to pretrained checkpoint --dataset kitti --do_kb_crop
|
110 |
+
```
|
111 |
+
|
112 |
+
## Qualitative Depth and Point Cloud Results
|
113 |
+
|
114 |
+
You can download the qualitative depth results of [IEBins](https://arxiv.org/abs/2309.14137), [NDDepth](https://arxiv.org/abs/2309.10592), [NeWCRFs](https://openaccess.thecvf.com/content/CVPR2022/html/Yuan_Neural_Window_Fully-Connected_CRFs_for_Monocular_Depth_Estimation_CVPR_2022_paper.html), [PixelFormer](https://openaccess.thecvf.com/content/WACV2023/html/Agarwal_Attention_Attention_Everywhere_Monocular_Depth_Prediction_With_Skip_Attention_WACV_2023_paper.html), [AdaBins](https://openaccess.thecvf.com/content/CVPR2021/html/Bhat_AdaBins_Depth_Estimation_Using_Adaptive_Bins_CVPR_2021_paper.html) and [BTS](https://arxiv.org/abs/1907.10326) on the test sets of NYUv2 and KITTI_Eigen from [here](https://pan.baidu.com/s/1zaFe40mwpQ5cvdDlLZRrCQ?pwd=vfxd) and download the qualitative point cloud results of IEBins, NDDepth, NeWCRFS, PixelFormer, AdaBins and BTS on the NYUv2 test set from [here](https://pan.baidu.com/s/1WwpFuPBGBUaSGPEdThJ6Rw?pwd=n9rw).
|
115 |
+
|
116 |
+
If you want to derive these results by yourself, please refer to the test.py.
|
117 |
+
|
118 |
+
If you want to perform inference on a single image, run:
|
119 |
+
|
120 |
+
```
|
121 |
+
python iebins/inference_single_image.py --dataset kitti or nyu --image_path path to image --checkpoint_path path to pretrained checkpoint --max_depth 80 or 10
|
122 |
+
```
|
123 |
+
|
124 |
+
Then you can acquire the qualitative depth result.
|
125 |
+
|
126 |
+
## Models
|
127 |
+
|
128 |
+
| Model | Abs Rel | Sq Rel | RMSE | a1 | a2 | a3 | Link |
|
129 |
+
| -------------------- | :-----: | :----: | :---: | :---: | :---: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
130 |
+
| NYUv2 (Swin-L) | 0.087 | 0.040 | 0.314 | 0.936 | 0.992 | 0.998 | [[Google]](https://drive.google.com/file/d/14Rn-vxvpXO2EXRaWqCPmh2JufvOurwtl/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1E2KAHtQ-ul99RGp_G7QK1w?pwd=7o4d) |
|
131 |
+
| NYUv2 (Swin-T) | 0.108 | 0.061 | 0.375 | 0.893 | 0.984 | 0.996 | [[Google]](https://drive.google.com/file/d/1eYkTb3grbDitQ9tJdg1DhAOaGmqgHWHK/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1v5_MJtP0YOSoark9Yw1RaQ?pwd=2k5d) |
|
132 |
+
| KITTI_Eigen (Swin-L) | 0.050 | 0.142 | 2.011 | 0.978 | 0.998 | 0.999 | [[Google]](https://drive.google.com/file/d/1xaVLDq7zJ-C2GtFvABolSUtK7gzvNQNd/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/16mRrKrr9PdZhuZ3ZlkmNlA?pwd=lcjd) |
|
133 |
+
| KITTI_Eigen (Swin-T) | 0.056 | 0.169 | 2.205 | 0.970 | 0.996 | 0.999 | [[Google]](https://drive.google.com/file/d/1s0LXZmS6_Q4_H_0hmbOldPcVhlRw8Dut/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1xgeqIX5WP5F2MFwypMWV5A?pwd=ygfi) |
|
134 |
+
|
135 |
+
| Model | SILog | Abs Rel | Sq Rel | RMSE | a1 | a2 | a3 | Link |
|
136 |
+
| ------------------------- | :---: | :-----: | :----: | :--: | :---: | :---: | :---: | :-----------------------------------------------------------------------------------------------: |
|
137 |
+
| KITTI_Official (Swinv2-L) | 7.48 | 5.20 | 0.79 | 2.34 | 0.974 | 0.996 | 0.999 | [[Google]](https://drive.google.com/file/d/19ARBiDTIvtZSWJVvhbEWBcZMonXsiOX1/view?usp=drive_link) |
|
138 |
+
|
139 |
+
## Citation
|
140 |
+
|
141 |
+
If you find our work useful in your research please consider citing our paper:
|
142 |
+
|
143 |
+
```
|
144 |
+
@inproceedings{shao2023IEBins,
|
145 |
+
title={IEBins: Iterative Elastic Bins for Monocular Depth Estimation},
|
146 |
+
author={Shao, Shuwei and Pei, Zhongcai and Wu, Xingming and Liu, Zhong and Chen, Weihai and Li, Zhengguo},
|
147 |
+
booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
|
148 |
+
year={2023}
|
149 |
+
}
|
150 |
+
```
|
151 |
+
|
152 |
+
## Contact
|
153 |
+
|
154 |
+
If you have any questions, please feel free to contact [email protected].
|
155 |
+
|
156 |
+
## Acknowledgement
|
157 |
+
|
158 |
+
Our code is based on the implementation of [NeWCRFs](https://github.com/aliyun/NeWCRFs) and [BTS](https://github.com/cleinc/bts). We thank their excellent works.
|
assets/teaser.jpg
ADDED
assets/teaser1.jpg
ADDED