Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitignore +9 -0
- README.md +1 -14
- main.py +222 -0
- packages.txt +1 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.pyc
|
3 |
+
.env
|
4 |
+
.DS_Store
|
5 |
+
|
6 |
+
*.mp4
|
7 |
+
*.mp3
|
8 |
+
|
9 |
+
.env
|
README.md
CHANGED
@@ -1,14 +1 @@
|
|
1 |
-
|
2 |
-
title: Audio2Text
|
3 |
-
emoji: ⚡
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: red
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.42.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
short_description: Converts powerpoint lectures into text separated by slides
|
12 |
-
---
|
13 |
-
|
14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
# vid2text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import zipfile
|
2 |
+
# import os
|
3 |
+
# import tempfile
|
4 |
+
# import whisper
|
5 |
+
|
6 |
+
# # Specify the input PPTX file and output ZIP file names
|
7 |
+
# file = '/Users/tushargupta/Downloads/Lecture 1_Definition and conceptualization.pptx' # Replace with your PPTX file path
|
8 |
+
# file = os.path.splitext(file)[0] + '.zip'
|
9 |
+
|
10 |
+
# # Create dictionary to store audio files
|
11 |
+
# audio_files = {}
|
12 |
+
|
13 |
+
# # Create temporary directory for extraction
|
14 |
+
# temp_dir = tempfile.mkdtemp()
|
15 |
+
|
16 |
+
# # Extract the zip file to temp directory
|
17 |
+
# with zipfile.ZipFile(file, 'r') as zip_ref:
|
18 |
+
# zip_ref.extractall(temp_dir)
|
19 |
+
|
20 |
+
# # Path to media folder
|
21 |
+
# media_path = os.path.join(temp_dir, 'ppt', 'media')
|
22 |
+
|
23 |
+
# # Check if media folder exists
|
24 |
+
# if os.path.exists(media_path):
|
25 |
+
# # Create temporary directory for converted files
|
26 |
+
# temp_audio_dir = tempfile.mkdtemp()
|
27 |
+
|
28 |
+
# # Iterate through slide numbers
|
29 |
+
# slide_num = 1
|
30 |
+
# while True:
|
31 |
+
# # Check for either .mp4 or .m4a file for current slide
|
32 |
+
# media_file = None
|
33 |
+
# for ext in ['.mp4', '.m4a']:
|
34 |
+
# filename = f'media{slide_num}{ext}'
|
35 |
+
# file_path = os.path.join(media_path, filename)
|
36 |
+
# if os.path.exists(file_path):
|
37 |
+
# media_file = file_path
|
38 |
+
# break
|
39 |
+
|
40 |
+
# if not media_file:
|
41 |
+
# break
|
42 |
+
|
43 |
+
# # Create temporary mp3 file
|
44 |
+
# temp_mp3 = os.path.join(temp_audio_dir, f'temp_{slide_num}.mp3')
|
45 |
+
|
46 |
+
# try:
|
47 |
+
# # Convert to mp3 using ffmpeg
|
48 |
+
# os.system(f'ffmpeg -i "{media_file}" -vn -acodec libmp3lame "{temp_mp3}" -loglevel quiet')
|
49 |
+
# # Store the temp mp3 file path in dictionary
|
50 |
+
# audio_files[slide_num-1] = temp_mp3
|
51 |
+
# except Exception as e:
|
52 |
+
# print(f"Error converting slide {slide_num}: {str(e)}")
|
53 |
+
|
54 |
+
# slide_num += 1
|
55 |
+
|
56 |
+
# # Load Whisper model
|
57 |
+
# model = whisper.load_model("base")
|
58 |
+
|
59 |
+
# # Dictionary to store transcriptions by slide number
|
60 |
+
# slide_transcripts = {}
|
61 |
+
|
62 |
+
# # Transcribe each audio file
|
63 |
+
# for slide_num, audio_file in audio_files.items():
|
64 |
+
# # Transcribe the audio file
|
65 |
+
# result = model.transcribe(audio_file)
|
66 |
+
# # Store transcription text for this slide
|
67 |
+
# slide_transcripts[slide_num + 1] = result["text"]
|
68 |
+
|
69 |
+
|
70 |
+
# # Display transcription per slide
|
71 |
+
# print("\nTranscription by Slide:")
|
72 |
+
# for slide_num, text in sorted(slide_transcripts.items()):
|
73 |
+
# print(f"\nSlide {slide_num}:")
|
74 |
+
# print(text)
|
75 |
+
|
76 |
+
import streamlit as st
|
77 |
+
import zipfile
|
78 |
+
import os
|
79 |
+
import tempfile
|
80 |
+
import whisper
|
81 |
+
from pathlib import Path
|
82 |
+
|
83 |
+
def process_pptx(uploaded_file):
|
84 |
+
# Create temporary file to save the uploaded file
|
85 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pptx') as tmp_pptx:
|
86 |
+
tmp_pptx.write(uploaded_file.getvalue())
|
87 |
+
pptx_path = tmp_pptx.name
|
88 |
+
|
89 |
+
# Convert PPTX path to ZIP path
|
90 |
+
zip_path = os.path.splitext(pptx_path)[0] + '.zip'
|
91 |
+
os.rename(pptx_path, zip_path)
|
92 |
+
|
93 |
+
# Create dictionary to store audio files
|
94 |
+
audio_files = {}
|
95 |
+
|
96 |
+
# Create temporary directory for extraction
|
97 |
+
temp_dir = tempfile.mkdtemp()
|
98 |
+
|
99 |
+
with st.spinner('Extracting PPTX contents...'):
|
100 |
+
# Extract the zip file to temp directory
|
101 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
102 |
+
zip_ref.extractall(temp_dir)
|
103 |
+
|
104 |
+
# Path to media folder
|
105 |
+
media_path = os.path.join(temp_dir, 'ppt', 'media')
|
106 |
+
|
107 |
+
# Check if media folder exists
|
108 |
+
if os.path.exists(media_path):
|
109 |
+
# Create temporary directory for converted files
|
110 |
+
temp_audio_dir = tempfile.mkdtemp()
|
111 |
+
|
112 |
+
# Progress bar for audio conversion
|
113 |
+
progress_bar = st.progress(0)
|
114 |
+
status_text = st.empty()
|
115 |
+
|
116 |
+
# First count total slides with audio
|
117 |
+
total_slides = 0
|
118 |
+
slide_num = 1
|
119 |
+
while True:
|
120 |
+
found = False
|
121 |
+
for ext in ['.mp4', '.m4a']:
|
122 |
+
if os.path.exists(os.path.join(media_path, f'media{slide_num}{ext}')):
|
123 |
+
total_slides += 1
|
124 |
+
found = True
|
125 |
+
break
|
126 |
+
if not found:
|
127 |
+
break
|
128 |
+
slide_num += 1
|
129 |
+
|
130 |
+
# Process audio files
|
131 |
+
slide_num = 1
|
132 |
+
processed_slides = 0
|
133 |
+
while True:
|
134 |
+
# Check for either .mp4 or .m4a file for current slide
|
135 |
+
media_file = None
|
136 |
+
for ext in ['.mp4', '.m4a']:
|
137 |
+
filename = f'media{slide_num}{ext}'
|
138 |
+
file_path = os.path.join(media_path, filename)
|
139 |
+
if os.path.exists(file_path):
|
140 |
+
media_file = file_path
|
141 |
+
break
|
142 |
+
|
143 |
+
if not media_file:
|
144 |
+
break
|
145 |
+
|
146 |
+
# Create temporary mp3 file
|
147 |
+
temp_mp3 = os.path.join(temp_audio_dir, f'temp_{slide_num}.mp3')
|
148 |
+
|
149 |
+
try:
|
150 |
+
status_text.text(f'Converting audio from slide {slide_num}...')
|
151 |
+
# Convert to mp3 using ffmpeg
|
152 |
+
os.system(f'ffmpeg -i "{media_file}" -vn -acodec libmp3lame "{temp_mp3}" -loglevel quiet')
|
153 |
+
# Store the temp mp3 file path in dictionary
|
154 |
+
audio_files[slide_num-1] = temp_mp3
|
155 |
+
processed_slides += 1
|
156 |
+
progress_bar.progress(processed_slides / total_slides)
|
157 |
+
except Exception as e:
|
158 |
+
st.error(f"Error converting slide {slide_num}: {str(e)}")
|
159 |
+
|
160 |
+
slide_num += 1
|
161 |
+
|
162 |
+
progress_bar.empty()
|
163 |
+
status_text.empty()
|
164 |
+
|
165 |
+
# Load Whisper model
|
166 |
+
with st.spinner('Loading Whisper model...'):
|
167 |
+
model = whisper.load_model("base")
|
168 |
+
|
169 |
+
# Dictionary to store transcriptions by slide number
|
170 |
+
slide_transcripts = {}
|
171 |
+
|
172 |
+
# Progress bar for transcription
|
173 |
+
progress_bar = st.progress(0)
|
174 |
+
status_text = st.empty()
|
175 |
+
|
176 |
+
# Transcribe each audio file
|
177 |
+
for idx, (slide_num, audio_file) in enumerate(audio_files.items()):
|
178 |
+
status_text.text(f'Transcribing slide {slide_num + 1}...')
|
179 |
+
# Transcribe the audio file
|
180 |
+
result = model.transcribe(audio_file)
|
181 |
+
# Store transcription text for this slide
|
182 |
+
slide_transcripts[slide_num + 1] = result["text"]
|
183 |
+
progress_bar.progress((idx + 1) / len(audio_files))
|
184 |
+
|
185 |
+
progress_bar.empty()
|
186 |
+
status_text.empty()
|
187 |
+
|
188 |
+
# Clean up temporary files
|
189 |
+
os.unlink(zip_path)
|
190 |
+
|
191 |
+
return slide_transcripts
|
192 |
+
return None
|
193 |
+
|
194 |
+
def main():
|
195 |
+
st.title('Audio2Text')
|
196 |
+
st.write('Upload a PowerPoint file (PPTX) to transcribe its audio content')
|
197 |
+
|
198 |
+
# File uploader
|
199 |
+
uploaded_file = st.file_uploader("Choose a PPTX file", type="pptx")
|
200 |
+
|
201 |
+
if uploaded_file is not None:
|
202 |
+
# Check file size (2GB limit)
|
203 |
+
if uploaded_file.size > 2 * 1024 * 1024 * 1024:
|
204 |
+
st.error("File size exceeds 2GB limit")
|
205 |
+
return
|
206 |
+
|
207 |
+
st.write("Processing... This may take a while depending on the number and length of audio clips.")
|
208 |
+
|
209 |
+
# Process the file
|
210 |
+
transcripts = process_pptx(uploaded_file)
|
211 |
+
|
212 |
+
if transcripts:
|
213 |
+
st.subheader("Transcription Results")
|
214 |
+
for slide_num, text in sorted(transcripts.items()):
|
215 |
+
st.markdown(f"**Slide {slide_num}**")
|
216 |
+
st.write(text)
|
217 |
+
st.markdown("---")
|
218 |
+
else:
|
219 |
+
st.warning("No audio content found in the PowerPoint file.")
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
main()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohttp==3.9.5
|
2 |
+
beautifulsoup4==4.12.3
|
3 |
+
ffmpeg-python==0.2.0
|
4 |
+
Flask==1.1.4
|
5 |
+
langchain==0.1.0
|
6 |
+
matplotlib==3.8.2
|
7 |
+
openai-whisper==20231117
|
8 |
+
streamlit==1.31.0
|