Spaces:
Running
Running
Maharshi Gor
commited on
Commit
·
55d797c
1
Parent(s):
7acf14e
Implements leaderboard functionality and dataset download
Browse filesAdds functions to download dataset snapshots and fetch leaderboard data.
Integrates leaderboard display with automatic refresh and user-friendly interface.
Enhances logging for better error tracking and debugging.
- app.py +56 -108
- src/about.py +40 -0
- src/components/quizbowl/populate.py +1 -1
- src/display/css_html_js.py +102 -22
- src/display/utils.py +5 -95
- src/display/utils_old.py +116 -0
- src/envs.py +10 -7
- src/leaderboard/__init__.py +0 -0
- src/leaderboard/read_evals.py +195 -0
- src/populate.py +69 -0
app.py
CHANGED
@@ -2,23 +2,29 @@ import datasets
|
|
2 |
import gradio as gr
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
from huggingface_hub import snapshot_download
|
|
|
5 |
|
|
|
|
|
6 |
from app_configs import DEFAULT_SELECTIONS, THEME
|
7 |
from components.quizbowl.bonus import BonusInterface
|
8 |
from components.quizbowl.tossup import TossupInterface
|
|
|
9 |
from display.custom_css import css_bonus, css_pipeline, css_tossup
|
10 |
from display.guide import GUIDE_MARKDOWN
|
|
|
11 |
|
12 |
# Constants
|
13 |
from envs import (
|
14 |
API,
|
15 |
EVAL_REQUESTS_PATH,
|
16 |
EVAL_RESULTS_PATH,
|
|
|
17 |
PLAYGROUND_DATASET_NAMES,
|
18 |
QUEUE_REPO,
|
19 |
REPO_ID,
|
20 |
RESULTS_REPO,
|
21 |
-
|
22 |
)
|
23 |
from workflows import factory
|
24 |
from workflows.configs import AVAILABLE_MODELS
|
@@ -28,107 +34,27 @@ def restart_space():
|
|
28 |
API.restart_space(repo_id=REPO_ID)
|
29 |
|
30 |
|
31 |
-
|
32 |
-
try:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
snapshot_download(
|
47 |
-
repo_id=RESULTS_REPO,
|
48 |
-
local_dir=EVAL_RESULTS_PATH,
|
49 |
-
repo_type="dataset",
|
50 |
-
tqdm_class=None,
|
51 |
-
etag_timeout=30,
|
52 |
-
token=TOKEN,
|
53 |
-
)
|
54 |
-
except Exception:
|
55 |
-
restart_space()
|
56 |
-
|
57 |
-
fonts_header = """
|
58 |
-
<link rel="preconnect" href="https://fonts.googleapis.com">
|
59 |
-
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
60 |
-
<link href="https://fonts.googleapis.com/css2?family=Shantell+Sans:ital,wght@0,300..800;1,300..800&display=swap" rel="stylesheet">
|
61 |
-
<link href="https://fonts.googleapis.com/css2?family=Space+Mono:ital,wght@0,400;0,700;1,400;1,700&display=swap" rel="stylesheet">
|
62 |
-
<link href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap" rel="stylesheet">
|
63 |
-
"""
|
64 |
-
|
65 |
-
js_head = """
|
66 |
-
<script>
|
67 |
-
const gradioApp = document.getElementsByTagName('gradio-app')[0];
|
68 |
-
console.log("Gradio app:", gradioApp);
|
69 |
-
console.log(gradioApp.querySelectorAll('.token'));
|
70 |
-
console.log(document.querySelectorAll('.token'));
|
71 |
-
|
72 |
-
// Function to trigger Python callback
|
73 |
-
const setHiddenIndex = (index) => {
|
74 |
-
console.log("Setting hidden index to:", index);
|
75 |
-
const hiddenIndex = gradioApp.querySelector("#hidden-index textarea");
|
76 |
-
if (hiddenIndex) {
|
77 |
-
hiddenIndex.value = index;
|
78 |
-
let event = new Event("input", { bubbles: true});
|
79 |
-
Object.defineProperty(event, "target", { value: hiddenIndex});
|
80 |
-
hiddenIndex.dispatchEvent(event);
|
81 |
-
}
|
82 |
-
};
|
83 |
-
|
84 |
-
// Add event listeners to all tokens
|
85 |
-
function setupTokenListeners() {
|
86 |
-
const tokens = gradioApp.querySelectorAll('.token');
|
87 |
-
console.log("Tokens:", tokens);
|
88 |
-
tokens.forEach(token => {
|
89 |
-
token.addEventListener('mouseover', function() {
|
90 |
-
const index = parseInt(this.getAttribute('data-index'));
|
91 |
-
console.log("Mouseover token index:", index);
|
92 |
-
|
93 |
-
// Reset all tokens
|
94 |
-
gradioApp.querySelectorAll('.token').forEach(el => {
|
95 |
-
el.classList.remove('highlighted');
|
96 |
-
});
|
97 |
-
|
98 |
-
// Highlight this token
|
99 |
-
this.classList.add('highlighted');
|
100 |
-
|
101 |
-
// Update the hidden index to trigger the Python callback
|
102 |
-
setHiddenIndex(index);
|
103 |
-
});
|
104 |
-
});
|
105 |
-
}
|
106 |
-
console.log("Preamble complete");
|
107 |
-
|
108 |
-
document.addEventListener("DOMContentLoaded", function() {
|
109 |
-
// Setup initial listeners
|
110 |
-
console.log("DOM fully loaded and parsed");
|
111 |
-
setupTokenListeners();
|
112 |
-
|
113 |
-
// Setup a mutation observer to handle dynamically added tokens
|
114 |
-
const observer = new MutationObserver(function(mutations) {
|
115 |
-
mutations.forEach(function(mutation) {
|
116 |
-
if (mutation.addedNodes.length) {
|
117 |
-
setupTokenListeners();
|
118 |
-
}
|
119 |
-
});
|
120 |
-
});
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
}
|
128 |
-
console.log("Listener setup complete");
|
129 |
-
});
|
130 |
-
</script>
|
131 |
-
"""
|
132 |
|
133 |
|
134 |
def load_dataset(mode: str):
|
@@ -144,17 +70,24 @@ def load_dataset(mode: str):
|
|
144 |
return ds
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
if __name__ == "__main__":
|
148 |
scheduler = BackgroundScheduler()
|
149 |
-
scheduler.add_job(restart_space, "interval", seconds=
|
150 |
scheduler.start()
|
151 |
|
152 |
-
|
|
|
153 |
tossup_ds = load_dataset("tossup")
|
154 |
bonus_ds = load_dataset("bonus")
|
155 |
with gr.Blocks(
|
156 |
-
css=
|
157 |
-
head=
|
158 |
theme=THEME,
|
159 |
title="Quizbowl Bot",
|
160 |
) as demo:
|
@@ -162,16 +95,31 @@ if __name__ == "__main__":
|
|
162 |
gr.Markdown(GUIDE_MARKDOWN)
|
163 |
with gr.Row():
|
164 |
gr.Markdown("## Welcome to Quizbowl Bot! This is a tool for creating and testing quizbowl agents.")
|
165 |
-
with gr.Tabs():
|
166 |
-
with gr.Tab("Tossup Agents"):
|
167 |
defaults = DEFAULT_SELECTIONS["tossup"] | {
|
168 |
"init_workflow": factory.create_simple_qb_tossup_workflow(),
|
169 |
}
|
170 |
tossup_interface = TossupInterface(demo, tossup_ds, AVAILABLE_MODELS, defaults)
|
171 |
-
with gr.Tab("Bonus Round Agents"):
|
172 |
defaults = DEFAULT_SELECTIONS["bonus"] | {
|
173 |
"init_workflow": factory.create_simple_qb_bonus_workflow(),
|
174 |
}
|
175 |
bonus_interface = BonusInterface(demo, bonus_ds, AVAILABLE_MODELS, defaults)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
2 |
import gradio as gr
|
3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
4 |
from huggingface_hub import snapshot_download
|
5 |
+
from loguru import logger
|
6 |
|
7 |
+
import populate
|
8 |
+
from about import LEADERBOARD_INTRODUCTION_TEXT, LEADERBOARD_TITLE
|
9 |
from app_configs import DEFAULT_SELECTIONS, THEME
|
10 |
from components.quizbowl.bonus import BonusInterface
|
11 |
from components.quizbowl.tossup import TossupInterface
|
12 |
+
from display.css_html_js import fonts_header, js_head, leaderboard_css
|
13 |
from display.custom_css import css_bonus, css_pipeline, css_tossup
|
14 |
from display.guide import GUIDE_MARKDOWN
|
15 |
+
from display.utils import AutoEvalColumn, fields
|
16 |
|
17 |
# Constants
|
18 |
from envs import (
|
19 |
API,
|
20 |
EVAL_REQUESTS_PATH,
|
21 |
EVAL_RESULTS_PATH,
|
22 |
+
LEADERBOARD_REFRESH_INTERVAL,
|
23 |
PLAYGROUND_DATASET_NAMES,
|
24 |
QUEUE_REPO,
|
25 |
REPO_ID,
|
26 |
RESULTS_REPO,
|
27 |
+
SERVER_REFRESH_INTERVAL,
|
28 |
)
|
29 |
from workflows import factory
|
30 |
from workflows.configs import AVAILABLE_MODELS
|
|
|
34 |
API.restart_space(repo_id=REPO_ID)
|
35 |
|
36 |
|
37 |
+
def download_dataset_snapshot(repo_id, local_dir):
|
38 |
+
try:
|
39 |
+
logger.info(f"Downloading dataset snapshot from {repo_id} to {local_dir}")
|
40 |
+
snapshot_download(
|
41 |
+
repo_id=repo_id,
|
42 |
+
local_dir=local_dir,
|
43 |
+
repo_type="dataset",
|
44 |
+
tqdm_class=None,
|
45 |
+
)
|
46 |
+
except Exception as e:
|
47 |
+
logger.error(f"Error downloading dataset snapshot from {repo_id} to {local_dir}: {e}. Restarting space.")
|
48 |
+
restart_space()
|
49 |
+
|
50 |
+
|
51 |
+
download_dataset_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
|
54 |
+
def fetch_leaderboard_df():
|
55 |
+
logger.info("Leaderboard fetched...")
|
56 |
+
download_dataset_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
57 |
+
return populate.get_leaderboard_df(EVAL_RESULTS_PATH)
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
def load_dataset(mode: str):
|
|
|
70 |
return ds
|
71 |
|
72 |
|
73 |
+
def get_default_tab_id(request: gr.Request):
|
74 |
+
logger.info(f"Request: {request}")
|
75 |
+
tab_key_value = request.query_params.get("tab", "tossup")
|
76 |
+
return gr.update(selected=tab_key_value)
|
77 |
+
|
78 |
+
|
79 |
if __name__ == "__main__":
|
80 |
scheduler = BackgroundScheduler()
|
81 |
+
scheduler.add_job(restart_space, "interval", seconds=SERVER_REFRESH_INTERVAL)
|
82 |
scheduler.start()
|
83 |
|
84 |
+
css = css_pipeline + css_tossup + css_bonus + leaderboard_css
|
85 |
+
head = fonts_header + js_head
|
86 |
tossup_ds = load_dataset("tossup")
|
87 |
bonus_ds = load_dataset("bonus")
|
88 |
with gr.Blocks(
|
89 |
+
css=css,
|
90 |
+
head=head,
|
91 |
theme=THEME,
|
92 |
title="Quizbowl Bot",
|
93 |
) as demo:
|
|
|
95 |
gr.Markdown(GUIDE_MARKDOWN)
|
96 |
with gr.Row():
|
97 |
gr.Markdown("## Welcome to Quizbowl Bot! This is a tool for creating and testing quizbowl agents.")
|
98 |
+
with gr.Tabs() as gtab:
|
99 |
+
with gr.Tab("🛎️ Tossup Agents", id="tossup"):
|
100 |
defaults = DEFAULT_SELECTIONS["tossup"] | {
|
101 |
"init_workflow": factory.create_simple_qb_tossup_workflow(),
|
102 |
}
|
103 |
tossup_interface = TossupInterface(demo, tossup_ds, AVAILABLE_MODELS, defaults)
|
104 |
+
with gr.Tab("🙋🏻♂️ Bonus Round Agents", id="bonus"):
|
105 |
defaults = DEFAULT_SELECTIONS["bonus"] | {
|
106 |
"init_workflow": factory.create_simple_qb_bonus_workflow(),
|
107 |
}
|
108 |
bonus_interface = BonusInterface(demo, bonus_ds, AVAILABLE_MODELS, defaults)
|
109 |
+
with gr.Tab("🏅 Leaderboard", elem_id="llm-benchmark-tab-table", id="leaderboard"):
|
110 |
+
leaderboard_timer = gr.Timer(LEADERBOARD_REFRESH_INTERVAL)
|
111 |
+
gr.Markdown("<a id='leaderboard' href='#leaderboard'>QANTA Leaderboard</a>")
|
112 |
+
gr.Markdown(LEADERBOARD_INTRODUCTION_TEXT)
|
113 |
+
refresh_btn = gr.Button("🔄 Refresh")
|
114 |
+
leaderboard_table = gr.Dataframe(
|
115 |
+
value=fetch_leaderboard_df,
|
116 |
+
every=leaderboard_timer,
|
117 |
+
headers=[c.name for c in fields(AutoEvalColumn)],
|
118 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
119 |
+
elem_id="leaderboard-table",
|
120 |
+
interactive=False,
|
121 |
+
visible=True,
|
122 |
+
)
|
123 |
+
refresh_btn.click(fn=fetch_leaderboard_df, inputs=[], outputs=leaderboard_table)
|
124 |
|
125 |
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class Task:
|
7 |
+
benchmark: str
|
8 |
+
metric: str
|
9 |
+
col_name: str
|
10 |
+
|
11 |
+
|
12 |
+
# Select your tasks here
|
13 |
+
# ---------------------------------------------------
|
14 |
+
class Tasks(Enum):
|
15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
16 |
+
task0 = Task("anli_r1", "acc", "ANLI")
|
17 |
+
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
18 |
+
|
19 |
+
|
20 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
21 |
+
# ---------------------------------------------------
|
22 |
+
|
23 |
+
|
24 |
+
# Your leaderboard name
|
25 |
+
LEADERBOARD_TITLE = """<h1 align="center" id="space-title">QANTA Leaderboard</h1>"""
|
26 |
+
|
27 |
+
# What does your leaderboard evaluate?
|
28 |
+
LEADERBOARD_INTRODUCTION_TEXT = """
|
29 |
+
Build an open-domain QA system that can answer any question posed by humans! For more: https://sites.google.com/view/qanta/home
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
# Which evaluations are you running? how can people reproduce what you have?
|
34 |
+
LLM_BENCHMARKS_TEXT = """
|
35 |
+
## How it works
|
36 |
+
|
37 |
+
## Reproducibility
|
38 |
+
To reproduce our results, here is the commands you can run:
|
39 |
+
|
40 |
+
"""
|
src/components/quizbowl/populate.py
CHANGED
@@ -20,7 +20,7 @@ def get_pipeline_names(competition_type: str, profile: gr.OAuthProfile | None) -
|
|
20 |
demo_example_names = submit.get_demo_example_submissions(competition_type)
|
21 |
user_model_names = submit.get_user_submission_names(competition_type, profile)
|
22 |
all_names = demo_example_names + user_model_names
|
23 |
-
logger.info("Loaded model names: {all_names}")
|
24 |
return all_names
|
25 |
|
26 |
|
|
|
20 |
demo_example_names = submit.get_demo_example_submissions(competition_type)
|
21 |
user_model_names = submit.get_user_submission_names(competition_type, profile)
|
22 |
all_names = demo_example_names + user_model_names
|
23 |
+
logger.info(f"Loaded model names: {all_names}")
|
24 |
return all_names
|
25 |
|
26 |
|
src/display/css_html_js.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
|
3 |
.markdown-text {
|
4 |
font-size: 16px !important;
|
@@ -46,27 +46,6 @@ custom_css = """
|
|
46 |
white-space: nowrap;
|
47 |
}
|
48 |
|
49 |
-
/* Workflow JSON styling */
|
50 |
-
.workflow-json-container {
|
51 |
-
margin-top: 20px;
|
52 |
-
margin-bottom: 30px;
|
53 |
-
}
|
54 |
-
|
55 |
-
.workflow-json {
|
56 |
-
border: 1px solid #ddd;
|
57 |
-
border-radius: 8px;
|
58 |
-
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
59 |
-
}
|
60 |
-
|
61 |
-
.workflow-json pre {
|
62 |
-
max-height: 500px;
|
63 |
-
overflow-y: auto;
|
64 |
-
}
|
65 |
-
|
66 |
-
.tab-buttons button {
|
67 |
-
font-size: 20px;
|
68 |
-
}
|
69 |
-
|
70 |
#scale-logo {
|
71 |
border-style: none !important;
|
72 |
box-shadow: none;
|
@@ -113,6 +92,30 @@ custom_css = """
|
|
113 |
}
|
114 |
"""
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
get_window_url_params = """
|
117 |
function(url_params) {
|
118 |
const params = new URLSearchParams(window.location.search);
|
@@ -120,3 +123,80 @@ get_window_url_params = """
|
|
120 |
return url_params;
|
121 |
}
|
122 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
leaderboard_css = """
|
2 |
|
3 |
.markdown-text {
|
4 |
font-size: 16px !important;
|
|
|
46 |
white-space: nowrap;
|
47 |
}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
#scale-logo {
|
50 |
border-style: none !important;
|
51 |
box-shadow: none;
|
|
|
92 |
}
|
93 |
"""
|
94 |
|
95 |
+
|
96 |
+
workflow_json_css = """
|
97 |
+
/* Workflow JSON styling */
|
98 |
+
.workflow-json-container {
|
99 |
+
margin-top: 20px;
|
100 |
+
margin-bottom: 30px;
|
101 |
+
}
|
102 |
+
|
103 |
+
.workflow-json {
|
104 |
+
border: 1px solid #ddd;
|
105 |
+
border-radius: 8px;
|
106 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
|
107 |
+
}
|
108 |
+
|
109 |
+
.workflow-json pre {
|
110 |
+
max-height: 500px;
|
111 |
+
overflow-y: auto;
|
112 |
+
}
|
113 |
+
|
114 |
+
.tab-buttons button {
|
115 |
+
font-size: 20px;
|
116 |
+
}
|
117 |
+
"""
|
118 |
+
|
119 |
get_window_url_params = """
|
120 |
function(url_params) {
|
121 |
const params = new URLSearchParams(window.location.search);
|
|
|
123 |
return url_params;
|
124 |
}
|
125 |
"""
|
126 |
+
|
127 |
+
|
128 |
+
fonts_header = """
|
129 |
+
<link rel="preconnect" href="https://fonts.googleapis.com">
|
130 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
131 |
+
<link href="https://fonts.googleapis.com/css2?family=Shantell+Sans:ital,wght@0,300..800;1,300..800&display=swap" rel="stylesheet">
|
132 |
+
<link href="https://fonts.googleapis.com/css2?family=Space+Mono:ital,wght@0,400;0,700;1,400;1,700&display=swap" rel="stylesheet">
|
133 |
+
<link href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap" rel="stylesheet">
|
134 |
+
"""
|
135 |
+
|
136 |
+
js_head = """
|
137 |
+
<script>
|
138 |
+
const gradioApp = document.getElementsByTagName('gradio-app')[0];
|
139 |
+
console.log("Gradio app:", gradioApp);
|
140 |
+
console.log(gradioApp.querySelectorAll('.token'));
|
141 |
+
console.log(document.querySelectorAll('.token'));
|
142 |
+
|
143 |
+
// Function to trigger Python callback
|
144 |
+
const setHiddenIndex = (index) => {
|
145 |
+
console.log("Setting hidden index to:", index);
|
146 |
+
const hiddenIndex = gradioApp.querySelector("#hidden-index textarea");
|
147 |
+
if (hiddenIndex) {
|
148 |
+
hiddenIndex.value = index;
|
149 |
+
let event = new Event("input", { bubbles: true});
|
150 |
+
Object.defineProperty(event, "target", { value: hiddenIndex});
|
151 |
+
hiddenIndex.dispatchEvent(event);
|
152 |
+
}
|
153 |
+
};
|
154 |
+
|
155 |
+
// Add event listeners to all tokens
|
156 |
+
function setupTokenListeners() {
|
157 |
+
const tokens = gradioApp.querySelectorAll('.token');
|
158 |
+
console.log("Tokens:", tokens);
|
159 |
+
tokens.forEach(token => {
|
160 |
+
token.addEventListener('mouseover', function() {
|
161 |
+
const index = parseInt(this.getAttribute('data-index'));
|
162 |
+
console.log("Mouseover token index:", index);
|
163 |
+
|
164 |
+
// Reset all tokens
|
165 |
+
gradioApp.querySelectorAll('.token').forEach(el => {
|
166 |
+
el.classList.remove('highlighted');
|
167 |
+
});
|
168 |
+
|
169 |
+
// Highlight this token
|
170 |
+
this.classList.add('highlighted');
|
171 |
+
|
172 |
+
// Update the hidden index to trigger the Python callback
|
173 |
+
setHiddenIndex(index);
|
174 |
+
});
|
175 |
+
});
|
176 |
+
}
|
177 |
+
console.log("Preamble complete");
|
178 |
+
|
179 |
+
document.addEventListener("DOMContentLoaded", function() {
|
180 |
+
// Setup initial listeners
|
181 |
+
console.log("DOM fully loaded and parsed");
|
182 |
+
setupTokenListeners();
|
183 |
+
|
184 |
+
// Setup a mutation observer to handle dynamically added tokens
|
185 |
+
const observer = new MutationObserver(function(mutations) {
|
186 |
+
mutations.forEach(function(mutation) {
|
187 |
+
if (mutation.addedNodes.length) {
|
188 |
+
setupTokenListeners();
|
189 |
+
}
|
190 |
+
});
|
191 |
+
});
|
192 |
+
|
193 |
+
// Start observing the token container for changes
|
194 |
+
const tokenContainer = gradioApp.querySelector('.token-container');
|
195 |
+
console.log("Token container:", tokenContainer);
|
196 |
+
if (tokenContainer) {
|
197 |
+
observer.observe(tokenContainer.parentNode, { childList: true, subtree: true });
|
198 |
+
}
|
199 |
+
console.log("Listener setup complete");
|
200 |
+
});
|
201 |
+
</script>
|
202 |
+
"""
|
src/display/utils.py
CHANGED
@@ -1,110 +1,20 @@
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
2 |
-
from enum import Enum
|
3 |
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from src.about import Tasks
|
7 |
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
11 |
|
12 |
-
# These classes are for user facing column names,
|
13 |
-
# to avoid having to change them all around the code
|
14 |
-
# when a modif is needed
|
15 |
@dataclass
|
16 |
class ColumnContent:
|
17 |
name: str
|
18 |
type: str
|
19 |
-
displayed_by_default: bool
|
20 |
-
hidden: bool = False
|
21 |
-
never_hidden: bool = False
|
22 |
|
23 |
-
|
24 |
auto_eval_column_dict = []
|
25 |
-
|
26 |
-
auto_eval_column_dict.append(["
|
27 |
-
auto_eval_column_dict.append(["
|
28 |
-
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
-
for task in Tasks:
|
31 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
-
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
-
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
45 |
-
|
46 |
-
## For the queue columns in the submission tab
|
47 |
-
@dataclass(frozen=True)
|
48 |
-
class EvalQueueColumn: # Queue column
|
49 |
-
model = ColumnContent("model", "markdown", True)
|
50 |
-
revision = ColumnContent("revision", "str", True)
|
51 |
-
private = ColumnContent("private", "bool", True)
|
52 |
-
precision = ColumnContent("precision", "str", True)
|
53 |
-
weight_type = ColumnContent("weight_type", "str", "Original")
|
54 |
-
status = ColumnContent("status", "str", True)
|
55 |
-
|
56 |
-
## All the model information that we might need
|
57 |
-
@dataclass
|
58 |
-
class ModelDetails:
|
59 |
-
name: str
|
60 |
-
display_name: str = ""
|
61 |
-
symbol: str = "" # emoji
|
62 |
-
|
63 |
-
|
64 |
-
class ModelType(Enum):
|
65 |
-
PT = ModelDetails(name="pretrained", symbol="🟢")
|
66 |
-
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
-
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
-
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
-
Unknown = ModelDetails(name="", symbol="?")
|
70 |
-
|
71 |
-
def to_str(self, separator=" "):
|
72 |
-
return f"{self.value.symbol}{separator}{self.value.name}"
|
73 |
-
|
74 |
-
@staticmethod
|
75 |
-
def from_str(type):
|
76 |
-
if "fine-tuned" in type or "🔶" in type:
|
77 |
-
return ModelType.FT
|
78 |
-
if "pretrained" in type or "🟢" in type:
|
79 |
-
return ModelType.PT
|
80 |
-
if "RL-tuned" in type or "🟦" in type:
|
81 |
-
return ModelType.RL
|
82 |
-
if "instruction-tuned" in type or "⭕" in type:
|
83 |
-
return ModelType.IFT
|
84 |
-
return ModelType.Unknown
|
85 |
-
|
86 |
-
class WeightType(Enum):
|
87 |
-
Adapter = ModelDetails("Adapter")
|
88 |
-
Original = ModelDetails("Original")
|
89 |
-
Delta = ModelDetails("Delta")
|
90 |
-
|
91 |
-
class Precision(Enum):
|
92 |
-
float16 = ModelDetails("float16")
|
93 |
-
bfloat16 = ModelDetails("bfloat16")
|
94 |
-
Unknown = ModelDetails("?")
|
95 |
-
|
96 |
-
def from_str(precision):
|
97 |
-
if precision in ["torch.float16", "float16"]:
|
98 |
-
return Precision.float16
|
99 |
-
if precision in ["torch.bfloat16", "bfloat16"]:
|
100 |
-
return Precision.bfloat16
|
101 |
-
return Precision.Unknown
|
102 |
-
|
103 |
-
# Column selection
|
104 |
-
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
105 |
-
|
106 |
-
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
107 |
-
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
108 |
-
|
109 |
-
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
110 |
-
|
|
|
1 |
from dataclasses import dataclass, make_dataclass
|
|
|
2 |
|
|
|
|
|
|
|
3 |
|
4 |
def fields(raw_class):
|
5 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
6 |
|
7 |
|
|
|
|
|
|
|
8 |
@dataclass
|
9 |
class ColumnContent:
|
10 |
name: str
|
11 |
type: str
|
|
|
|
|
|
|
12 |
|
13 |
+
|
14 |
auto_eval_column_dict = []
|
15 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown")])
|
16 |
+
auto_eval_column_dict.append(["buzz_accuracy", ColumnContent, ColumnContent("Buzz Accuracy ⬆️", "number")])
|
17 |
+
auto_eval_column_dict.append(["win_rate_human", ColumnContent, ColumnContent("Win Rate (Human Teams)", "number")])
|
18 |
+
auto_eval_column_dict.append(["win_rate_model", ColumnContent, ColumnContent("Win Rate (Model Teams)", "number")])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils_old.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, make_dataclass
|
2 |
+
from enum import Enum
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from about import Tasks
|
7 |
+
|
8 |
+
|
9 |
+
def fields(raw_class):
|
10 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
11 |
+
|
12 |
+
|
13 |
+
# These classes are for user facing column names,
|
14 |
+
# to avoid having to change them all around the code
|
15 |
+
# when a modif is needed
|
16 |
+
@dataclass
|
17 |
+
class ColumnContent:
|
18 |
+
name: str
|
19 |
+
type: str
|
20 |
+
displayed_by_default: bool
|
21 |
+
hidden: bool = False
|
22 |
+
never_hidden: bool = False
|
23 |
+
|
24 |
+
|
25 |
+
## Leaderboard columns
|
26 |
+
auto_eval_column_dict = []
|
27 |
+
# Init
|
28 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
+
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
+
# Scores
|
31 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
32 |
+
for task in Tasks:
|
33 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
34 |
+
# Model information
|
35 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
36 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
37 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
38 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
39 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
40 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
41 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
42 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
43 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
44 |
+
|
45 |
+
# We use make dataclass to dynamically fill the scores from Tasks
|
46 |
+
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
47 |
+
|
48 |
+
|
49 |
+
## For the queue columns in the submission tab
|
50 |
+
@dataclass(frozen=True)
|
51 |
+
class EvalQueueColumn: # Queue column
|
52 |
+
model = ColumnContent("model", "markdown", True)
|
53 |
+
revision = ColumnContent("revision", "str", True)
|
54 |
+
private = ColumnContent("private", "bool", True)
|
55 |
+
precision = ColumnContent("precision", "str", True)
|
56 |
+
weight_type = ColumnContent("weight_type", "str", "Original")
|
57 |
+
status = ColumnContent("status", "str", True)
|
58 |
+
|
59 |
+
|
60 |
+
## All the model information that we might need
|
61 |
+
@dataclass
|
62 |
+
class ModelDetails:
|
63 |
+
name: str
|
64 |
+
display_name: str = ""
|
65 |
+
symbol: str = "" # emoji
|
66 |
+
|
67 |
+
|
68 |
+
class ModelType(Enum):
|
69 |
+
PT = ModelDetails(name="pretrained", symbol="🟢")
|
70 |
+
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
71 |
+
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
72 |
+
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
73 |
+
Unknown = ModelDetails(name="", symbol="?")
|
74 |
+
|
75 |
+
def to_str(self, separator=" "):
|
76 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def from_str(type):
|
80 |
+
if "fine-tuned" in type or "🔶" in type:
|
81 |
+
return ModelType.FT
|
82 |
+
if "pretrained" in type or "🟢" in type:
|
83 |
+
return ModelType.PT
|
84 |
+
if "RL-tuned" in type or "🟦" in type:
|
85 |
+
return ModelType.RL
|
86 |
+
if "instruction-tuned" in type or "⭕" in type:
|
87 |
+
return ModelType.IFT
|
88 |
+
return ModelType.Unknown
|
89 |
+
|
90 |
+
|
91 |
+
class WeightType(Enum):
|
92 |
+
Adapter = ModelDetails("Adapter")
|
93 |
+
Original = ModelDetails("Original")
|
94 |
+
Delta = ModelDetails("Delta")
|
95 |
+
|
96 |
+
|
97 |
+
class Precision(Enum):
|
98 |
+
float16 = ModelDetails("float16")
|
99 |
+
bfloat16 = ModelDetails("bfloat16")
|
100 |
+
Unknown = ModelDetails("?")
|
101 |
+
|
102 |
+
def from_str(precision):
|
103 |
+
if precision in ["torch.float16", "float16"]:
|
104 |
+
return Precision.float16
|
105 |
+
if precision in ["torch.bfloat16", "bfloat16"]:
|
106 |
+
return Precision.bfloat16
|
107 |
+
return Precision.Unknown
|
108 |
+
|
109 |
+
|
110 |
+
# Column selection
|
111 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
112 |
+
|
113 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
114 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
115 |
+
|
116 |
+
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
src/envs.py
CHANGED
@@ -9,22 +9,22 @@ OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
|
9 |
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
|
10 |
COHERE_API_KEY = os.environ.get("COHERE_API_KEY")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
# ----------------------------------
|
16 |
|
17 |
REPO_ID = f"{OWNER}/quizbowl-submission"
|
18 |
QUEUE_REPO = f"{OWNER}/advcal-requests"
|
19 |
-
RESULTS_REPO = f"{OWNER}/advcal-results
|
20 |
|
21 |
EXAMPLES_PATH = "examples"
|
22 |
|
23 |
PLAYGROUND_DATASET_NAMES = {
|
24 |
-
"tossup": "
|
25 |
-
"bonus": "
|
26 |
}
|
27 |
|
|
|
|
|
28 |
# If you setup a cache later, just change HF_HOME
|
29 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
30 |
|
@@ -35,4 +35,7 @@ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
|
35 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
36 |
|
37 |
|
|
|
|
|
|
|
38 |
API = HfApi(token=TOKEN)
|
|
|
9 |
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
|
10 |
COHERE_API_KEY = os.environ.get("COHERE_API_KEY")
|
11 |
|
12 |
+
# Change to your org - don't forget to create a results and request dataset, with the correct format!
|
13 |
+
OWNER = "umdclip"
|
|
|
|
|
14 |
|
15 |
REPO_ID = f"{OWNER}/quizbowl-submission"
|
16 |
QUEUE_REPO = f"{OWNER}/advcal-requests"
|
17 |
+
RESULTS_REPO = f"{OWNER}/model-results" # TODO: change to advcal-results after testing is done
|
18 |
|
19 |
EXAMPLES_PATH = "examples"
|
20 |
|
21 |
PLAYGROUND_DATASET_NAMES = {
|
22 |
+
"tossup": f"{OWNER}/acf-co24-tossups",
|
23 |
+
"bonus": f"{OWNER}/acf-co24-bonuses",
|
24 |
}
|
25 |
|
26 |
+
# ----------------------------------
|
27 |
+
|
28 |
# If you setup a cache later, just change HF_HOME
|
29 |
CACHE_PATH = os.getenv("HF_HOME", ".")
|
30 |
|
|
|
35 |
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
36 |
|
37 |
|
38 |
+
SERVER_REFRESH_INTERVAL = 86400 # seconds (one day)
|
39 |
+
LEADERBOARD_REFRESH_INTERVAL = 600 # seconds (10 minutes)
|
40 |
+
|
41 |
API = HfApi(token=TOKEN)
|
src/leaderboard/__init__.py
ADDED
File without changes
|
src/leaderboard/read_evals.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from display.formatting import make_clickable_model
|
11 |
+
from display.utils_old import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
12 |
+
from submission.check_validity import is_model_on_hub
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class EvalResult:
|
17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
18 |
+
|
19 |
+
eval_name: str # org_model_precision (uid)
|
20 |
+
full_model: str # org/model (path on hub)
|
21 |
+
org: str
|
22 |
+
model: str
|
23 |
+
revision: str # commit hash, "" if main
|
24 |
+
results: dict
|
25 |
+
precision: Precision = Precision.Unknown
|
26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
28 |
+
architecture: str = "Unknown"
|
29 |
+
license: str = "?"
|
30 |
+
likes: int = 0
|
31 |
+
num_params: int = 0
|
32 |
+
date: str = "" # submission date of request file
|
33 |
+
still_on_hub: bool = False
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def init_from_json_file(self, json_filepath):
|
37 |
+
"""Inits the result from the specific model result file"""
|
38 |
+
with open(json_filepath) as fp:
|
39 |
+
data = json.load(fp)
|
40 |
+
|
41 |
+
config = data.get("config")
|
42 |
+
|
43 |
+
# Precision
|
44 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
+
|
46 |
+
# Get model and org
|
47 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
+
org_and_model = org_and_model.split("/", 1)
|
49 |
+
|
50 |
+
if len(org_and_model) == 1:
|
51 |
+
org = None
|
52 |
+
model = org_and_model[0]
|
53 |
+
result_key = f"{model}_{precision.value.name}"
|
54 |
+
else:
|
55 |
+
org = org_and_model[0]
|
56 |
+
model = org_and_model[1]
|
57 |
+
result_key = f"{org}_{model}_{precision.value.name}"
|
58 |
+
full_model = "/".join(org_and_model)
|
59 |
+
|
60 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
+
)
|
63 |
+
architecture = "?"
|
64 |
+
if model_config is not None:
|
65 |
+
architectures = getattr(model_config, "architectures", None)
|
66 |
+
if architectures:
|
67 |
+
architecture = ";".join(architectures)
|
68 |
+
|
69 |
+
# Extract results available in this file (some results are split in several files)
|
70 |
+
results = {}
|
71 |
+
for task in Tasks:
|
72 |
+
task = task.value
|
73 |
+
|
74 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
+
continue
|
78 |
+
|
79 |
+
mean_acc = np.mean(accs) * 100.0
|
80 |
+
results[task.benchmark] = mean_acc
|
81 |
+
|
82 |
+
return self(
|
83 |
+
eval_name=result_key,
|
84 |
+
full_model=full_model,
|
85 |
+
org=org,
|
86 |
+
model=model,
|
87 |
+
results=results,
|
88 |
+
precision=precision,
|
89 |
+
revision=config.get("model_sha", ""),
|
90 |
+
still_on_hub=still_on_hub,
|
91 |
+
architecture=architecture,
|
92 |
+
)
|
93 |
+
|
94 |
+
def update_with_request_file(self, requests_path):
|
95 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
97 |
+
|
98 |
+
try:
|
99 |
+
with open(request_file, "r") as f:
|
100 |
+
request = json.load(f)
|
101 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
+
self.license = request.get("license", "?")
|
104 |
+
self.likes = request.get("likes", 0)
|
105 |
+
self.num_params = request.get("params", 0)
|
106 |
+
self.date = request.get("submitted_time", "")
|
107 |
+
except Exception:
|
108 |
+
print(
|
109 |
+
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
110 |
+
)
|
111 |
+
|
112 |
+
def to_dict(self):
|
113 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
114 |
+
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
115 |
+
data_dict = {
|
116 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
117 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
118 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
119 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
120 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
121 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
122 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
123 |
+
AutoEvalColumn.revision.name: self.revision,
|
124 |
+
AutoEvalColumn.average.name: average,
|
125 |
+
AutoEvalColumn.license.name: self.license,
|
126 |
+
AutoEvalColumn.likes.name: self.likes,
|
127 |
+
AutoEvalColumn.params.name: self.num_params,
|
128 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
129 |
+
}
|
130 |
+
|
131 |
+
for task in Tasks:
|
132 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
133 |
+
|
134 |
+
return data_dict
|
135 |
+
|
136 |
+
|
137 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
138 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
139 |
+
request_files = os.path.join(
|
140 |
+
requests_path,
|
141 |
+
f"{model_name}_eval_request_*.json",
|
142 |
+
)
|
143 |
+
request_files = glob.glob(request_files)
|
144 |
+
|
145 |
+
# Select correct request file (precision)
|
146 |
+
request_file = ""
|
147 |
+
request_files = sorted(request_files, reverse=True)
|
148 |
+
for tmp_request_file in request_files:
|
149 |
+
with open(tmp_request_file, "r") as f:
|
150 |
+
req_content = json.load(f)
|
151 |
+
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
|
152 |
+
request_file = tmp_request_file
|
153 |
+
return request_file
|
154 |
+
|
155 |
+
|
156 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
157 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
158 |
+
model_result_filepaths = []
|
159 |
+
|
160 |
+
for root, _, files in os.walk(results_path):
|
161 |
+
# We should only have json files in model results
|
162 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
163 |
+
continue
|
164 |
+
|
165 |
+
# Sort the files by date
|
166 |
+
try:
|
167 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
168 |
+
except dateutil.parser._parser.ParserError:
|
169 |
+
files = [files[-1]]
|
170 |
+
|
171 |
+
for file in files:
|
172 |
+
model_result_filepaths.append(os.path.join(root, file))
|
173 |
+
|
174 |
+
eval_results = {}
|
175 |
+
for model_result_filepath in model_result_filepaths:
|
176 |
+
# Creation of result
|
177 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
178 |
+
eval_result.update_with_request_file(requests_path)
|
179 |
+
|
180 |
+
# Store results of same eval together
|
181 |
+
eval_name = eval_result.eval_name
|
182 |
+
if eval_name in eval_results.keys():
|
183 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
184 |
+
else:
|
185 |
+
eval_results[eval_name] = eval_result
|
186 |
+
|
187 |
+
results = []
|
188 |
+
for v in eval_results.values():
|
189 |
+
try:
|
190 |
+
v.to_dict() # we test if the dict version is complete
|
191 |
+
results.append(v)
|
192 |
+
except KeyError: # not all eval values present
|
193 |
+
continue
|
194 |
+
|
195 |
+
return results
|
src/populate.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from display.formatting import make_clickable_model
|
7 |
+
from display.utils_old import EvalQueueColumn
|
8 |
+
|
9 |
+
|
10 |
+
def get_leaderboard_df(results_path: str) -> pd.DataFrame:
|
11 |
+
model_result_filepaths = []
|
12 |
+
for root, _, files in os.walk(results_path):
|
13 |
+
if len(files) == 0 or not all(f.endswith(".json") for f in files):
|
14 |
+
continue
|
15 |
+
for file in files:
|
16 |
+
model_result_filepaths.append(os.path.join(root, file))
|
17 |
+
|
18 |
+
eval_results = {"model": [], "buzz_accuracy": [], "win_rate_human": [], "win_rate_model": []}
|
19 |
+
for model_result_filepath in model_result_filepaths:
|
20 |
+
with open(model_result_filepath, "r") as fin:
|
21 |
+
model_result = json.load(fin)
|
22 |
+
model_id = model_result["model_id"]
|
23 |
+
buzz_accuracy = model_result["buzz_accuracy"]
|
24 |
+
win_rate_human = model_result["win_rate_human"]
|
25 |
+
win_rate_model = model_result["win_rate_model"]
|
26 |
+
eval_results["model"].append(model_id)
|
27 |
+
eval_results["buzz_accuracy"].append(buzz_accuracy)
|
28 |
+
eval_results["win_rate_human"].append(win_rate_human)
|
29 |
+
eval_results["win_rate_model"].append(win_rate_model)
|
30 |
+
return pd.DataFrame(eval_results)
|
31 |
+
|
32 |
+
|
33 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
34 |
+
# TODO: This function is stale, but might be a good reference point for new implementation
|
35 |
+
"""Creates the different dataframes for the evaluation queues requestes"""
|
36 |
+
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
37 |
+
all_evals = []
|
38 |
+
|
39 |
+
for entry in entries:
|
40 |
+
if ".json" in entry:
|
41 |
+
file_path = os.path.join(save_path, entry)
|
42 |
+
with open(file_path) as fp:
|
43 |
+
data = json.load(fp)
|
44 |
+
|
45 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
46 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
47 |
+
|
48 |
+
all_evals.append(data)
|
49 |
+
elif ".md" not in entry:
|
50 |
+
# this is a folder
|
51 |
+
sub_entries = [
|
52 |
+
e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")
|
53 |
+
]
|
54 |
+
for sub_entry in sub_entries:
|
55 |
+
file_path = os.path.join(save_path, entry, sub_entry)
|
56 |
+
with open(file_path) as fp:
|
57 |
+
data = json.load(fp)
|
58 |
+
|
59 |
+
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
60 |
+
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
61 |
+
all_evals.append(data)
|
62 |
+
|
63 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
64 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
65 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
66 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
67 |
+
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
68 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
69 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|