Spaces:
Running
Running
Maharshi Gor
commited on
Commit
·
3b39b49
1
Parent(s):
22e8b31
Updates and Refactor in QB Interfaces:
Browse files* Tooltips for model buzz, card style for questions
* Remove reset button for temperature
* Remove unused logging
- app.py +2 -2
- src/components/model_pipeline/state_manager.py +0 -2
- src/components/model_step/model_step.py +1 -0
- src/components/quizbowl/bonus.py +34 -94
- src/components/quizbowl/commons.py +15 -0
- src/components/quizbowl/plotting.py +172 -64
- src/components/quizbowl/tossup.py +39 -69
- src/components/quizbowl/utils.py +16 -25
- src/display/custom_css.py +113 -1
app.py
CHANGED
@@ -6,7 +6,7 @@ from huggingface_hub import snapshot_download
|
|
6 |
from app_configs import AVAILABLE_MODELS, DEFAULT_SELECTIONS, THEME
|
7 |
from components.quizbowl.bonus import BonusInterface
|
8 |
from components.quizbowl.tossup import TossupInterface
|
9 |
-
from display.custom_css import css_pipeline, css_tossup
|
10 |
from display.guide import GUIDE_MARKDOWN
|
11 |
|
12 |
# Constants
|
@@ -148,7 +148,7 @@ if __name__ == "__main__":
|
|
148 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
149 |
scheduler.start()
|
150 |
|
151 |
-
full_css = css_pipeline + css_tossup
|
152 |
tossup_ds = load_dataset("tossup")
|
153 |
bonus_ds = load_dataset("bonus")
|
154 |
with gr.Blocks(
|
|
|
6 |
from app_configs import AVAILABLE_MODELS, DEFAULT_SELECTIONS, THEME
|
7 |
from components.quizbowl.bonus import BonusInterface
|
8 |
from components.quizbowl.tossup import TossupInterface
|
9 |
+
from display.custom_css import css_bonus, css_pipeline, css_tossup
|
10 |
from display.guide import GUIDE_MARKDOWN
|
11 |
|
12 |
# Constants
|
|
|
148 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
149 |
scheduler.start()
|
150 |
|
151 |
+
full_css = css_pipeline + css_tossup + css_bonus
|
152 |
tossup_ds = load_dataset("tossup")
|
153 |
bonus_ds = load_dataset("bonus")
|
154 |
with gr.Blocks(
|
src/components/model_pipeline/state_manager.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import json
|
2 |
-
import logging
|
3 |
from typing import Any, Literal
|
4 |
|
5 |
import gradio as gr
|
@@ -31,7 +30,6 @@ class ModelStepUIState(BaseModel):
|
|
31 |
def update(self, key: str, value: Any) -> "ModelStepUIState":
|
32 |
"""Update the UI state."""
|
33 |
new_state = self.model_copy(update={key: value})
|
34 |
-
logging.warning("UI state updated: %s", self)
|
35 |
return new_state
|
36 |
|
37 |
|
|
|
1 |
import json
|
|
|
2 |
from typing import Any, Literal
|
3 |
|
4 |
import gradio as gr
|
|
|
30 |
def update(self, key: str, value: Any) -> "ModelStepUIState":
|
31 |
"""Update the UI state."""
|
32 |
new_state = self.model_copy(update={key: value})
|
|
|
33 |
return new_state
|
34 |
|
35 |
|
src/components/model_step/model_step.py
CHANGED
@@ -244,6 +244,7 @@ class ModelStepComponent(FormComponent):
|
|
244 |
step=0.05,
|
245 |
info="Temperature",
|
246 |
show_label=False,
|
|
|
247 |
)
|
248 |
|
249 |
def render(self):
|
|
|
244 |
step=0.05,
|
245 |
info="Temperature",
|
246 |
show_label=False,
|
247 |
+
show_reset_button=False,
|
248 |
)
|
249 |
|
250 |
def render(self):
|
src/components/quizbowl/bonus.py
CHANGED
@@ -3,8 +3,6 @@ import logging
|
|
3 |
from typing import Any
|
4 |
|
5 |
import gradio as gr
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import numpy as np
|
8 |
import pandas as pd
|
9 |
from datasets import Dataset
|
10 |
|
@@ -14,17 +12,14 @@ from workflows.qb.multi_step_agent import MultiStepBonusAgent
|
|
14 |
from workflows.qb.simple_agent import SimpleBonusAgent
|
15 |
from workflows.structs import ModelStep, Workflow
|
16 |
|
|
|
17 |
from .plotting import (
|
18 |
-
|
|
|
19 |
create_scatter_pyplot,
|
20 |
-
|
21 |
-
update_plot,
|
22 |
)
|
23 |
-
|
24 |
-
|
25 |
-
def evaluate_bonus_part(prediction: str, clean_answers: list[str]) -> float:
|
26 |
-
"""Evaluate a single bonus part."""
|
27 |
-
return evaluate_buzz(prediction, clean_answers)
|
28 |
|
29 |
|
30 |
def process_bonus_results(results: list[dict]) -> pd.DataFrame:
|
@@ -46,13 +41,7 @@ def process_bonus_results(results: list[dict]) -> pd.DataFrame:
|
|
46 |
def initialize_eval_interface(example: dict, model_outputs: list[dict]):
|
47 |
"""Initialize the interface with example text."""
|
48 |
try:
|
49 |
-
|
50 |
-
leadin_html = f"<div class='leadin'>{example['leadin']}</div>"
|
51 |
-
parts_html = []
|
52 |
-
for i, part in enumerate(example["parts"]):
|
53 |
-
parts_html.append(f"<div class='part'><b>Part {i + 1}:</b> {part['part']}</div>")
|
54 |
-
|
55 |
-
html_content = f"{leadin_html}<div class='parts-container'>{''.join(parts_html)}</div>"
|
56 |
|
57 |
# Create confidence plot data
|
58 |
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs)
|
@@ -66,33 +55,6 @@ def initialize_eval_interface(example: dict, model_outputs: list[dict]):
|
|
66 |
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"
|
67 |
|
68 |
|
69 |
-
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]):
|
70 |
-
"""Create confidence plot for bonus parts."""
|
71 |
-
plt.style.use("ggplot")
|
72 |
-
fig = plt.figure(figsize=(10, 6))
|
73 |
-
ax = fig.add_subplot(111)
|
74 |
-
|
75 |
-
# Plot confidence for each part
|
76 |
-
x = range(1, len(parts) + 1)
|
77 |
-
confidences = [output["confidence"] for output in model_outputs]
|
78 |
-
scores = [output["score"] for output in model_outputs]
|
79 |
-
|
80 |
-
# Plot confidence bars
|
81 |
-
bars = ax.bar(x, confidences, color="#4698cf")
|
82 |
-
|
83 |
-
# Color bars based on correctness
|
84 |
-
for i, score in enumerate(scores):
|
85 |
-
bars[i].set_color("green" if score == 1 else "red")
|
86 |
-
|
87 |
-
ax.set_title("Part Confidence")
|
88 |
-
ax.set_xlabel("Part Number")
|
89 |
-
ax.set_ylabel("Confidence")
|
90 |
-
ax.set_xticks(x)
|
91 |
-
ax.set_xticklabels([f"Part {i}" for i in x])
|
92 |
-
|
93 |
-
return fig
|
94 |
-
|
95 |
-
|
96 |
def validate_workflow(workflow: Workflow):
|
97 |
"""Validate that a workflow is properly configured for the bonus task."""
|
98 |
if not workflow.steps:
|
@@ -165,27 +127,14 @@ class BonusInterface:
|
|
165 |
simple=simple,
|
166 |
model_options=list(self.model_options.keys()),
|
167 |
)
|
168 |
-
with gr.Row():
|
169 |
-
self.run_btn = gr.Button("Run Bonus", variant="primary")
|
170 |
|
171 |
def _render_qb_interface(self):
|
172 |
"""Render the quizbowl interface."""
|
173 |
-
with gr.Row():
|
174 |
-
self.qid_selector =
|
175 |
-
|
176 |
-
)
|
177 |
-
self.answer_display = gr.Textbox(
|
178 |
-
label="Answers", elem_id="answer-display", elem_classes="answer-box", interactive=False, scale=1
|
179 |
-
)
|
180 |
-
self.clean_answer_display = gr.Textbox(
|
181 |
-
label="Acceptable Answers",
|
182 |
-
elem_id="answer-display-2",
|
183 |
-
elem_classes="answer-box",
|
184 |
-
interactive=False,
|
185 |
-
scale=2,
|
186 |
-
)
|
187 |
|
188 |
-
self.question_display = gr.HTML(label="Question", elem_id="question-display")
|
189 |
with gr.Row():
|
190 |
self.confidence_plot = gr.Plot(
|
191 |
label="Part Confidence",
|
@@ -198,7 +147,7 @@ class BonusInterface:
|
|
198 |
)
|
199 |
|
200 |
with gr.Row():
|
201 |
-
self.eval_btn = gr.Button("Evaluate")
|
202 |
|
203 |
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
|
204 |
with gr.Row():
|
@@ -206,7 +155,7 @@ class BonusInterface:
|
|
206 |
self.description_input = gr.Textbox(label="Description")
|
207 |
with gr.Row():
|
208 |
gr.LoginButton()
|
209 |
-
self.submit_btn = gr.Button("Submit")
|
210 |
self.submit_status = gr.HTML(label="Submission Status")
|
211 |
|
212 |
def render(self):
|
@@ -226,30 +175,20 @@ class BonusInterface:
|
|
226 |
|
227 |
def get_new_question_html(self, question_id: int):
|
228 |
"""Get the HTML for a new question."""
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
for i, part in enumerate(parts):
|
237 |
-
parts_html.append(f"<div class='part'>{part['part']}</div>")
|
238 |
-
|
239 |
-
parts_html_str = "<br>".join(parts_html)
|
240 |
-
|
241 |
-
html_content = (
|
242 |
-
f"<div class='token-container'>{leadin_html}<div class='parts-container'><br>{parts_html_str}</div></div>"
|
243 |
-
)
|
244 |
-
|
245 |
-
# Format answers
|
246 |
-
primary_answers = [f"{i + 1}. {part['answer_primary']}" for i, part in enumerate(parts)]
|
247 |
-
clean_answers = []
|
248 |
-
for i, part in enumerate(parts):
|
249 |
-
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
|
250 |
-
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
|
251 |
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
def get_model_outputs(self, example: dict, pipeline_state: PipelineState):
|
255 |
"""Get the model outputs for a given question ID."""
|
@@ -267,13 +206,13 @@ class BonusInterface:
|
|
267 |
|
268 |
# Add part number and evaluate score
|
269 |
part_output["part_number"] = i + 1
|
270 |
-
part_output["score"] =
|
271 |
|
272 |
outputs.append(part_output)
|
273 |
|
274 |
return outputs
|
275 |
|
276 |
-
def
|
277 |
self,
|
278 |
question_id: int,
|
279 |
pipeline_state: PipelineState,
|
@@ -302,9 +241,9 @@ class BonusInterface:
|
|
302 |
import traceback
|
303 |
|
304 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
305 |
-
return error_msg,
|
306 |
|
307 |
-
def
|
308 |
"""Evaluate the bonus questions."""
|
309 |
try:
|
310 |
# Validate inputs
|
@@ -361,14 +300,15 @@ class BonusInterface:
|
|
361 |
triggers=[self.app.load, self.qid_selector.change],
|
362 |
fn=self.get_new_question_html,
|
363 |
inputs=[self.qid_selector],
|
364 |
-
outputs=[self.question_display
|
365 |
)
|
|
|
366 |
self.run_btn.click(
|
367 |
self.pipeline_interface.validate_workflow,
|
368 |
inputs=[self.pipeline_interface.pipeline_state],
|
369 |
outputs=[self.pipeline_interface.pipeline_state],
|
370 |
).success(
|
371 |
-
self.
|
372 |
inputs=[
|
373 |
self.qid_selector,
|
374 |
self.pipeline_interface.pipeline_state,
|
@@ -382,7 +322,7 @@ class BonusInterface:
|
|
382 |
)
|
383 |
|
384 |
self.eval_btn.click(
|
385 |
-
fn=self.
|
386 |
inputs=[self.pipeline_interface.pipeline_state],
|
387 |
outputs=[self.results_table, self.confidence_plot],
|
388 |
)
|
@@ -397,7 +337,7 @@ class BonusInterface:
|
|
397 |
outputs=[self.submit_status],
|
398 |
)
|
399 |
self.hidden_input.change(
|
400 |
-
fn=
|
401 |
inputs=[self.hidden_input, self.output_state],
|
402 |
outputs=[self.confidence_plot],
|
403 |
)
|
|
|
3 |
from typing import Any
|
4 |
|
5 |
import gradio as gr
|
|
|
|
|
6 |
import pandas as pd
|
7 |
from datasets import Dataset
|
8 |
|
|
|
12 |
from workflows.qb.simple_agent import SimpleBonusAgent
|
13 |
from workflows.structs import ModelStep, Workflow
|
14 |
|
15 |
+
from .commons import get_qid_selector
|
16 |
from .plotting import (
|
17 |
+
create_bonus_confidence_plot,
|
18 |
+
create_bonus_html,
|
19 |
create_scatter_pyplot,
|
20 |
+
update_tossup_plot,
|
|
|
21 |
)
|
22 |
+
from .utils import evaluate_prediction
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def process_bonus_results(results: list[dict]) -> pd.DataFrame:
|
|
|
41 |
def initialize_eval_interface(example: dict, model_outputs: list[dict]):
|
42 |
"""Initialize the interface with example text."""
|
43 |
try:
|
44 |
+
html_content = create_bonus_html(example["leadin"], example["parts"])
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Create confidence plot data
|
47 |
plot_data = create_bonus_confidence_plot(example["parts"], model_outputs)
|
|
|
55 |
return f"<div>Error initializing interface: {str(e)}</div>", pd.DataFrame(), "{}"
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
def validate_workflow(workflow: Workflow):
|
59 |
"""Validate that a workflow is properly configured for the bonus task."""
|
60 |
if not workflow.steps:
|
|
|
127 |
simple=simple,
|
128 |
model_options=list(self.model_options.keys()),
|
129 |
)
|
|
|
|
|
130 |
|
131 |
def _render_qb_interface(self):
|
132 |
"""Render the quizbowl interface."""
|
133 |
+
with gr.Row(elem_classes="bonus-header-row form-inline"):
|
134 |
+
self.qid_selector = get_qid_selector(len(self.ds))
|
135 |
+
self.run_btn = gr.Button("Run on Bonus Question", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
self.question_display = gr.HTML(label="Question", elem_id="bonus-question-display")
|
138 |
with gr.Row():
|
139 |
self.confidence_plot = gr.Plot(
|
140 |
label="Part Confidence",
|
|
|
147 |
)
|
148 |
|
149 |
with gr.Row():
|
150 |
+
self.eval_btn = gr.Button("Evaluate", variant="primary")
|
151 |
|
152 |
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
|
153 |
with gr.Row():
|
|
|
155 |
self.description_input = gr.Textbox(label="Description")
|
156 |
with gr.Row():
|
157 |
gr.LoginButton()
|
158 |
+
self.submit_btn = gr.Button("Submit", variant="primary")
|
159 |
self.submit_status = gr.HTML(label="Submission Status")
|
160 |
|
161 |
def render(self):
|
|
|
175 |
|
176 |
def get_new_question_html(self, question_id: int):
|
177 |
"""Get the HTML for a new question."""
|
178 |
+
if question_id is None:
|
179 |
+
logging.error("Question ID is None. Setting to 1")
|
180 |
+
question_id = 1
|
181 |
+
try:
|
182 |
+
question_id = int(question_id) - 1
|
183 |
+
if not self.ds or question_id < 0 or question_id >= len(self.ds):
|
184 |
+
return "Invalid question ID or dataset not loaded"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
example = self.ds[question_id]
|
187 |
+
leadin = example["leadin"]
|
188 |
+
parts = example["parts"]
|
189 |
+
return create_bonus_html(leadin, parts)
|
190 |
+
except Exception as e:
|
191 |
+
return f"Error loading question: {str(e)}"
|
192 |
|
193 |
def get_model_outputs(self, example: dict, pipeline_state: PipelineState):
|
194 |
"""Get the model outputs for a given question ID."""
|
|
|
206 |
|
207 |
# Add part number and evaluate score
|
208 |
part_output["part_number"] = i + 1
|
209 |
+
part_output["score"] = evaluate_prediction(part_output["answer"], part["clean_answers"])
|
210 |
|
211 |
outputs.append(part_output)
|
212 |
|
213 |
return outputs
|
214 |
|
215 |
+
def single_run(
|
216 |
self,
|
217 |
question_id: int,
|
218 |
pipeline_state: PipelineState,
|
|
|
241 |
import traceback
|
242 |
|
243 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
244 |
+
return error_msg, gr.skip(), gr.skip(), gr.skip()
|
245 |
|
246 |
+
def evaluate(self, pipeline_state: PipelineState, progress: gr.Progress = gr.Progress()):
|
247 |
"""Evaluate the bonus questions."""
|
248 |
try:
|
249 |
# Validate inputs
|
|
|
300 |
triggers=[self.app.load, self.qid_selector.change],
|
301 |
fn=self.get_new_question_html,
|
302 |
inputs=[self.qid_selector],
|
303 |
+
outputs=[self.question_display],
|
304 |
)
|
305 |
+
|
306 |
self.run_btn.click(
|
307 |
self.pipeline_interface.validate_workflow,
|
308 |
inputs=[self.pipeline_interface.pipeline_state],
|
309 |
outputs=[self.pipeline_interface.pipeline_state],
|
310 |
).success(
|
311 |
+
self.single_run,
|
312 |
inputs=[
|
313 |
self.qid_selector,
|
314 |
self.pipeline_interface.pipeline_state,
|
|
|
322 |
)
|
323 |
|
324 |
self.eval_btn.click(
|
325 |
+
fn=self.evaluate,
|
326 |
inputs=[self.pipeline_interface.pipeline_state],
|
327 |
outputs=[self.results_table, self.confidence_plot],
|
328 |
)
|
|
|
337 |
outputs=[self.submit_status],
|
338 |
)
|
339 |
self.hidden_input.change(
|
340 |
+
fn=update_tossup_plot,
|
341 |
inputs=[self.hidden_input, self.output_state],
|
342 |
outputs=[self.confidence_plot],
|
343 |
)
|
src/components/quizbowl/commons.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
def get_qid_selector(dataset_size: int):
|
5 |
+
return gr.Number(
|
6 |
+
info="Question ID",
|
7 |
+
value=1,
|
8 |
+
precision=0,
|
9 |
+
minimum=1,
|
10 |
+
maximum=dataset_size,
|
11 |
+
show_label=False,
|
12 |
+
scale=0,
|
13 |
+
container=False,
|
14 |
+
elem_classes="qid-selector",
|
15 |
+
)
|
src/components/quizbowl/plotting.py
CHANGED
@@ -7,67 +7,145 @@ import matplotlib.pyplot as plt
|
|
7 |
import pandas as pd
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
"""Create HTML for tokens with hover capability and a colored header for the answer."""
|
33 |
try:
|
34 |
-
html_parts = []
|
35 |
ep = dict(eval_points)
|
36 |
-
marker_indices = set(marker_indices)
|
37 |
-
|
38 |
-
# Add a colored header for the answer
|
39 |
-
# html_parts.append(create_answer_html(answer))
|
40 |
|
|
|
41 |
for i, token in enumerate(tokens):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
else:
|
57 |
-
css_class = f" guess-point buzz-{score}"
|
58 |
-
|
59 |
-
token_html = f'<span id="token-{i}" class="token{css_class}" data-index="{i}">{display_token}</span>'
|
60 |
-
if i in marker_indices:
|
61 |
-
token_html += "<span style='color: rgba(0,0,255,0.3);'>|</span>"
|
62 |
-
html_parts.append(token_html)
|
63 |
-
|
64 |
-
return f"<div class='token-container'>{''.join(html_parts)}</div>"
|
65 |
except Exception as e:
|
66 |
logging.error(f"Error creating token HTML: {e}", exc_info=True)
|
67 |
return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"
|
68 |
|
69 |
|
70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
"""Create a Gradio LinePlot of token values with optional highlighting using DataFrame."""
|
72 |
try:
|
73 |
# Create base confidence data
|
@@ -114,26 +192,29 @@ def create_line_plot(eval_points, highlighted_index=-1):
|
|
114 |
return pd.DataFrame(columns=["position", "value", "type", "highlight", "color"])
|
115 |
|
116 |
|
117 |
-
def
|
|
|
|
|
118 |
"""Create a pyplot of token values with optional highlighting."""
|
119 |
plt.style.use("ggplot") # Set theme to grid paper
|
120 |
-
fig = plt.figure(figsize=(
|
121 |
ax = fig.add_subplot(111)
|
122 |
x = [0]
|
123 |
y = [0]
|
124 |
-
for i,
|
125 |
x.append(i + 1)
|
126 |
-
y.append(v)
|
127 |
|
128 |
ax.plot(x, y, "o--", color="#4698cf")
|
129 |
-
for i,
|
130 |
-
if not
|
131 |
continue
|
132 |
-
|
133 |
-
|
|
|
134 |
if i >= len(tokens):
|
135 |
print(f"Token index {i} is out of bounds for n_tokens: {len(tokens)}")
|
136 |
-
ax.annotate(f"{tokens[i]}", (i + 1,
|
137 |
|
138 |
if highlighted_index >= 0:
|
139 |
# Add light vertical line for the highlighted token from 0 to 1
|
@@ -147,10 +228,10 @@ def create_pyplot(tokens, eval_points, highlighted_index=-1):
|
|
147 |
return fig
|
148 |
|
149 |
|
150 |
-
def create_scatter_pyplot(token_positions, scores):
|
151 |
"""Create a scatter plot of token positions and scores."""
|
152 |
plt.style.use("ggplot")
|
153 |
-
fig = plt.figure(figsize=(
|
154 |
ax = fig.add_subplot(111)
|
155 |
|
156 |
counts = Counter(zip(token_positions, scores))
|
@@ -167,7 +248,34 @@ def create_scatter_pyplot(token_positions, scores):
|
|
167 |
return fig
|
168 |
|
169 |
|
170 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
"""Update the plot when a token is hovered; add a vertical line on the plot."""
|
172 |
try:
|
173 |
if not state or state == "{}":
|
@@ -187,7 +295,7 @@ def update_plot(highlighted_index, state):
|
|
187 |
|
188 |
# Create updated plot with highlighting of the token point
|
189 |
# plot_data = create_line_plot(values, highlighted_index)
|
190 |
-
plot_data =
|
191 |
return plot_data
|
192 |
except Exception as e:
|
193 |
logging.error(f"Error updating plot: {e}")
|
|
|
7 |
import pandas as pd
|
8 |
|
9 |
|
10 |
+
def _make_answer_html(answer: str, clean_answers: list[str] = []) -> str:
|
11 |
+
clean_answers = [a for a in clean_answers if len(a.split()) <= 6 and a != answer]
|
12 |
+
additional_answers_html = ""
|
13 |
+
if clean_answers:
|
14 |
+
additional_answers_html = f"<span class='bonus-answer-text'> [or {', '.join(clean_answers)}]</span>"
|
15 |
+
return f"""
|
16 |
+
<div class='bonus-answer'>
|
17 |
+
<span class='bonus-answer-label'>Answer: </span>
|
18 |
+
<span class='bonus-answer-text'>{answer}</span>
|
19 |
+
{additional_answers_html}
|
20 |
+
</div>
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
def _get_token_classes(confidence, buzz, score) -> str:
|
25 |
+
if confidence is None:
|
26 |
+
return "token"
|
27 |
+
elif not buzz:
|
28 |
+
return "token guess-point no-buzz"
|
29 |
+
else:
|
30 |
+
return f"token guess-point buzz-{score}"
|
31 |
+
|
32 |
+
|
33 |
+
def _create_token_tooltip_html(values) -> str:
|
34 |
+
if not values:
|
35 |
+
return ""
|
36 |
+
confidence = values.get("confidence", 0)
|
37 |
+
buzz = values.get("buzz", 0)
|
38 |
+
score = values.get("score", 0)
|
39 |
+
answer = values.get("answer", "")
|
40 |
+
answer_tokens = answer.split()
|
41 |
+
if len(answer_tokens) > 10:
|
42 |
+
k = len(answer_tokens) - 10
|
43 |
+
answer = " ".join(answer_tokens[:10]) + f"...[{k} more words]"
|
44 |
+
|
45 |
+
color = "#a3c9a3" if score else "#ebbec4" # Light green for correct, light pink for incorrect
|
46 |
+
|
47 |
+
return f"""
|
48 |
+
<div class="tooltip card" style="background-color: {color}; border-radius: 8px; padding: 12px; box-shadow: 2px 4px 8px rgba(0, 0, 0, 0.15);">
|
49 |
+
<div class="tooltip-content" style="font-family: 'Arial', sans-serif; color: #333;">
|
50 |
+
<h4 style="margin: 0 0 8px;">💡 Answer</h4>
|
51 |
+
<p style="font-weight: bold; margin: 0 0 8px;">{answer}</p>
|
52 |
+
<p style="margin: 0 0 4px;">📊 <strong>Confidence:</strong> {confidence:.2f}</p>
|
53 |
+
<p style="margin: 0;">🔍 <strong>Status:</strong> {"✅ Correct" if score else "❌ Incorrect" if buzz else "🚫 No Buzz"}</p>
|
54 |
+
</div>
|
55 |
+
</div>
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
def create_token_html(token: str, values: dict, i: int) -> str:
|
60 |
+
confidence = values.get("confidence", None)
|
61 |
+
buzz = values.get("buzz", 0)
|
62 |
+
score = values.get("score", 0)
|
63 |
+
|
64 |
+
# Replace non-word characters for proper display in HTML
|
65 |
+
display_token = f"{token} 🚨" if buzz else f"{token} 💭" if values else token
|
66 |
+
if not re.match(r"\w+", token):
|
67 |
+
display_token = token.replace(" ", " ")
|
68 |
+
|
69 |
+
css_class = _get_token_classes(confidence, buzz, score)
|
70 |
+
# Add tooltip if we have values for this token
|
71 |
+
tooltip_html = _create_token_tooltip_html(values)
|
72 |
+
|
73 |
+
token_html = f'<span id="token-{i}" class="{css_class}" data-index="{i}">{display_token}{tooltip_html}</span>'
|
74 |
+
# if i in marker_indices:
|
75 |
+
# token_html += "<span style='color: crimson;'>|</span>"
|
76 |
+
return token_html
|
77 |
+
|
78 |
+
|
79 |
+
def create_tossup_html(
|
80 |
+
tokens: list[str],
|
81 |
+
answer_primary: str,
|
82 |
+
clean_answers: list[str],
|
83 |
+
marker_indices: list[int] = [],
|
84 |
+
eval_points: list[tuple[int, dict]] = [],
|
85 |
+
) -> str:
|
86 |
"""Create HTML for tokens with hover capability and a colored header for the answer."""
|
87 |
try:
|
|
|
88 |
ep = dict(eval_points)
|
89 |
+
marker_indices = set(marker_indices)
|
|
|
|
|
|
|
90 |
|
91 |
+
html_tokens = []
|
92 |
for i, token in enumerate(tokens):
|
93 |
+
token_html = create_token_html(token, ep.get(i, {}), i + 1)
|
94 |
+
html_tokens.append(token_html)
|
95 |
+
|
96 |
+
answer_html = _make_answer_html(answer_primary, clean_answers)
|
97 |
+
return f"""
|
98 |
+
<div class='bonus-container'>
|
99 |
+
<div class='bonus-card'>
|
100 |
+
<div class='tossup-question'>
|
101 |
+
{"".join(html_tokens)}
|
102 |
+
</div>
|
103 |
+
{answer_html}
|
104 |
+
</div>
|
105 |
+
</div>
|
106 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
except Exception as e:
|
108 |
logging.error(f"Error creating token HTML: {e}", exc_info=True)
|
109 |
return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"
|
110 |
|
111 |
|
112 |
+
def create_bonus_html(leadin: str, parts: list[dict]) -> str:
|
113 |
+
# Create HTML for leadin and parts with answers
|
114 |
+
leadin_html = f"<div class='bonus-leadin'>{leadin}</div>"
|
115 |
+
parts_html = []
|
116 |
+
|
117 |
+
for i, part in enumerate(parts):
|
118 |
+
question_text = part["part"]
|
119 |
+
answer_html = _make_answer_html(part["answer_primary"], part["clean_answers"])
|
120 |
+
|
121 |
+
"<div class='bonus-part-number'>Part {i + 1}</div>"
|
122 |
+
part_html = f"""
|
123 |
+
<div class='bonus-part'>
|
124 |
+
<div class='bonus-part-text'><b>#{i + 1}.</b> {question_text}</div>
|
125 |
+
{answer_html}
|
126 |
+
</div>
|
127 |
+
"""
|
128 |
+
parts_html.append(part_html)
|
129 |
+
|
130 |
+
html_content = f"""
|
131 |
+
<div class='bonus-container'>
|
132 |
+
<div class='bonus-card'>
|
133 |
+
{leadin_html}
|
134 |
+
{"".join(parts_html)}
|
135 |
+
</div>
|
136 |
+
</div>
|
137 |
+
"""
|
138 |
+
|
139 |
+
# Format clean answers for the answer display
|
140 |
+
clean_answers = []
|
141 |
+
for i, part in enumerate(parts):
|
142 |
+
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
|
143 |
+
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
|
144 |
+
|
145 |
+
return html_content
|
146 |
+
|
147 |
+
|
148 |
+
def create_line_plot(eval_points: list[tuple[int, dict]], highlighted_index: int = -1) -> pd.DataFrame:
|
149 |
"""Create a Gradio LinePlot of token values with optional highlighting using DataFrame."""
|
150 |
try:
|
151 |
# Create base confidence data
|
|
|
192 |
return pd.DataFrame(columns=["position", "value", "type", "highlight", "color"])
|
193 |
|
194 |
|
195 |
+
def create_tossup_confidence_pyplot(
|
196 |
+
tokens: list[str], eval_points: list[tuple[int, dict]], highlighted_index: int = -1
|
197 |
+
) -> plt.Figure:
|
198 |
"""Create a pyplot of token values with optional highlighting."""
|
199 |
plt.style.use("ggplot") # Set theme to grid paper
|
200 |
+
fig = plt.figure(figsize=(11, 5)) # Set figure size to 11x5
|
201 |
ax = fig.add_subplot(111)
|
202 |
x = [0]
|
203 |
y = [0]
|
204 |
+
for i, v in eval_points:
|
205 |
x.append(i + 1)
|
206 |
+
y.append(v["confidence"])
|
207 |
|
208 |
ax.plot(x, y, "o--", color="#4698cf")
|
209 |
+
for i, v in eval_points:
|
210 |
+
if not v["buzz"]:
|
211 |
continue
|
212 |
+
confidence = v["confidence"]
|
213 |
+
color = "green" if v["score"] else "red"
|
214 |
+
ax.plot(i + 1, confidence, "o", color=color)
|
215 |
if i >= len(tokens):
|
216 |
print(f"Token index {i} is out of bounds for n_tokens: {len(tokens)}")
|
217 |
+
ax.annotate(f"{tokens[i]}", (i + 1, confidence), textcoords="offset points", xytext=(0, 10), ha="center")
|
218 |
|
219 |
if highlighted_index >= 0:
|
220 |
# Add light vertical line for the highlighted token from 0 to 1
|
|
|
228 |
return fig
|
229 |
|
230 |
|
231 |
+
def create_scatter_pyplot(token_positions: list[int], scores: list[int]) -> plt.Figure:
|
232 |
"""Create a scatter plot of token positions and scores."""
|
233 |
plt.style.use("ggplot")
|
234 |
+
fig = plt.figure(figsize=(11, 5))
|
235 |
ax = fig.add_subplot(111)
|
236 |
|
237 |
counts = Counter(zip(token_positions, scores))
|
|
|
248 |
return fig
|
249 |
|
250 |
|
251 |
+
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]) -> plt.Figure:
|
252 |
+
"""Create confidence plot for bonus parts."""
|
253 |
+
plt.style.use("ggplot")
|
254 |
+
fig = plt.figure(figsize=(10, 6))
|
255 |
+
ax = fig.add_subplot(111)
|
256 |
+
|
257 |
+
# Plot confidence for each part
|
258 |
+
x = range(1, len(parts) + 1)
|
259 |
+
confidences = [output["confidence"] for output in model_outputs]
|
260 |
+
scores = [output["score"] for output in model_outputs]
|
261 |
+
|
262 |
+
# Plot confidence bars
|
263 |
+
bars = ax.bar(x, confidences, color="#4698cf")
|
264 |
+
|
265 |
+
# Color bars based on correctness
|
266 |
+
for i, score in enumerate(scores):
|
267 |
+
bars[i].set_color("green" if score == 1 else "red")
|
268 |
+
|
269 |
+
ax.set_title("Part Confidence")
|
270 |
+
ax.set_xlabel("Part Number")
|
271 |
+
ax.set_ylabel("Confidence")
|
272 |
+
ax.set_xticks(x)
|
273 |
+
ax.set_xticklabels([f"Part {i}" for i in x])
|
274 |
+
|
275 |
+
return fig
|
276 |
+
|
277 |
+
|
278 |
+
def update_tossup_plot(highlighted_index: int, state: str) -> pd.DataFrame:
|
279 |
"""Update the plot when a token is hovered; add a vertical line on the plot."""
|
280 |
try:
|
281 |
if not state or state == "{}":
|
|
|
295 |
|
296 |
# Create updated plot with highlighting of the token point
|
297 |
# plot_data = create_line_plot(values, highlighted_index)
|
298 |
+
plot_data = create_tossup_confidence_pyplot(tokens, values, highlighted_index)
|
299 |
return plot_data
|
300 |
except Exception as e:
|
301 |
logging.error(f"Error updating plot: {e}")
|
src/components/quizbowl/tossup.py
CHANGED
@@ -13,14 +13,14 @@ from workflows.qb.multi_step_agent import MultiStepTossupAgent
|
|
13 |
from workflows.qb.simple_agent import SimpleTossupAgent
|
14 |
from workflows.structs import ModelStep, Workflow
|
15 |
|
|
|
16 |
from .plotting import (
|
17 |
-
create_answer_html,
|
18 |
-
create_pyplot,
|
19 |
create_scatter_pyplot,
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
)
|
|
|
24 |
|
25 |
# TODO: Error handling on run tossup and evaluate tossup and show correct messages
|
26 |
# TODO: ^^ Same for Bonus
|
@@ -29,7 +29,7 @@ from .plotting import (
|
|
29 |
def add_model_scores(model_outputs: list[dict], clean_answers: list[str], run_indices: list[int]) -> list[dict]:
|
30 |
"""Add model scores to the model outputs."""
|
31 |
for output, run_idx in zip(model_outputs, run_indices):
|
32 |
-
output["score"] =
|
33 |
output["token_position"] = run_idx + 1
|
34 |
return model_outputs
|
35 |
|
@@ -43,26 +43,25 @@ def prepare_buzz_evals(
|
|
43 |
return [], []
|
44 |
eval_points = []
|
45 |
for i, v in zip(run_indices, model_outputs):
|
46 |
-
|
47 |
-
eval_points.append((int(i), eval_point))
|
48 |
|
49 |
return eval_points
|
50 |
|
51 |
|
52 |
def initialize_eval_interface(example, model_outputs: list[dict]):
|
53 |
"""Initialize the interface with example text."""
|
54 |
-
tokens = example["question"].split()
|
55 |
-
run_indices = example["run_indices"]
|
56 |
-
answer = example["answer_primary"]
|
57 |
-
|
58 |
try:
|
|
|
|
|
|
|
|
|
59 |
eval_points = prepare_buzz_evals(run_indices, model_outputs)
|
60 |
|
61 |
if not tokens:
|
62 |
return "<div>No tokens found in the provided text.</div>", pd.DataFrame(), "{}"
|
63 |
-
highlighted_index = next((int(i) for i,
|
64 |
-
html_content =
|
65 |
-
plot_data =
|
66 |
|
67 |
# Store tokens, values, and buzzes as JSON for later use
|
68 |
state = json.dumps({"tokens": tokens, "values": eval_points})
|
@@ -195,26 +194,13 @@ class TossupInterface:
|
|
195 |
label="Early Stop",
|
196 |
info="Stop early if already buzzed",
|
197 |
)
|
198 |
-
self.run_btn = gr.Button("Run Tossup", variant="primary")
|
199 |
|
200 |
def _render_qb_interface(self):
|
201 |
"""Render the quizbowl interface."""
|
202 |
-
with gr.Row():
|
203 |
-
self.qid_selector =
|
204 |
-
|
205 |
-
|
206 |
-
self.answer_display = gr.Textbox(
|
207 |
-
label="PrimaryAnswer", elem_id="answer-display", elem_classes="answer-box", interactive=False, scale=1
|
208 |
-
)
|
209 |
-
self.clean_answer_display = gr.Textbox(
|
210 |
-
label="Acceptable Answers",
|
211 |
-
elem_id="answer-display-2",
|
212 |
-
elem_classes="answer-box",
|
213 |
-
interactive=False,
|
214 |
-
scale=2,
|
215 |
-
)
|
216 |
-
# self.answer_display = gr.HTML(label="Answer", elem_id="answer-display")
|
217 |
-
self.question_display = gr.HTML(label="Question", elem_id="question-display")
|
218 |
with gr.Row():
|
219 |
self.confidence_plot = gr.Plot(
|
220 |
label="Buzz Confidence",
|
@@ -225,7 +211,7 @@ class TossupInterface:
|
|
225 |
value=pd.DataFrame(columns=["Token Position", "Correct?", "Confidence", "Prediction"]),
|
226 |
)
|
227 |
with gr.Row():
|
228 |
-
self.eval_btn = gr.Button("Evaluate")
|
229 |
|
230 |
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
|
231 |
with gr.Row():
|
@@ -233,7 +219,7 @@ class TossupInterface:
|
|
233 |
self.description_input = gr.Textbox(label="Description")
|
234 |
with gr.Row():
|
235 |
gr.LoginButton()
|
236 |
-
self.submit_btn = gr.Button("Submit")
|
237 |
self.submit_status = gr.HTML(label="Submission Status")
|
238 |
|
239 |
def render(self):
|
@@ -253,22 +239,6 @@ class TossupInterface:
|
|
253 |
|
254 |
self._setup_event_listeners()
|
255 |
|
256 |
-
def get_full_question(self, question_id: int) -> str:
|
257 |
-
"""Get the full question text for a given question ID."""
|
258 |
-
try:
|
259 |
-
question_id = int(question_id - 1)
|
260 |
-
if not self.ds or question_id < 0 or question_id >= len(self.ds):
|
261 |
-
return "Invalid question ID or dataset not loaded"
|
262 |
-
|
263 |
-
question_data = self.ds[question_id]
|
264 |
-
# Get the full question text (the last element in question_runs)
|
265 |
-
full_question = question_data["question"]
|
266 |
-
gold_label = question_data["answer_primary"]
|
267 |
-
|
268 |
-
return f"Question: {full_question}\n\nCorrect Answer: {gold_label}"
|
269 |
-
except Exception as e:
|
270 |
-
return f"Error loading question: {str(e)}"
|
271 |
-
|
272 |
def validate_workflow(self, pipeline_state: PipelineState):
|
273 |
"""Validate the workflow."""
|
274 |
try:
|
@@ -276,17 +246,19 @@ class TossupInterface:
|
|
276 |
except Exception as e:
|
277 |
raise gr.Error(f"Error validating workflow: {str(e)}")
|
278 |
|
279 |
-
def get_new_question_html(self, question_id: int):
|
280 |
"""Get the HTML for a new question."""
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
|
|
|
|
290 |
|
291 |
def get_model_outputs(self, example: dict, pipeline_state: PipelineState, buzz_threshold: float, early_stop: bool):
|
292 |
"""Get the model outputs for a given question ID."""
|
@@ -304,7 +276,7 @@ class TossupInterface:
|
|
304 |
outputs = add_model_scores(outputs, example["clean_answers"], example["run_indices"])
|
305 |
return outputs
|
306 |
|
307 |
-
def
|
308 |
self,
|
309 |
question_id: int,
|
310 |
pipeline_state: PipelineState,
|
@@ -335,10 +307,8 @@ class TossupInterface:
|
|
335 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
336 |
return error_msg, None, None
|
337 |
|
338 |
-
def
|
339 |
-
|
340 |
-
):
|
341 |
-
"""Evaluate the tossup."""
|
342 |
try:
|
343 |
# Validate inputs
|
344 |
if not self.ds or not self.ds.num_rows:
|
@@ -388,7 +358,7 @@ class TossupInterface:
|
|
388 |
triggers=[self.app.load, self.qid_selector.change],
|
389 |
fn=self.get_new_question_html,
|
390 |
inputs=[self.qid_selector],
|
391 |
-
outputs=[self.question_display
|
392 |
)
|
393 |
|
394 |
self.run_btn.click(
|
@@ -396,7 +366,7 @@ class TossupInterface:
|
|
396 |
inputs=[self.pipeline_interface.pipeline_state],
|
397 |
outputs=[self.pipeline_interface.pipeline_state],
|
398 |
).success(
|
399 |
-
self.
|
400 |
inputs=[
|
401 |
self.qid_selector,
|
402 |
self.pipeline_interface.pipeline_state,
|
@@ -412,7 +382,7 @@ class TossupInterface:
|
|
412 |
)
|
413 |
|
414 |
self.eval_btn.click(
|
415 |
-
fn=self.
|
416 |
inputs=[self.pipeline_interface.pipeline_state, self.buzz_t_slider],
|
417 |
outputs=[self.results_table, self.confidence_plot],
|
418 |
)
|
@@ -428,7 +398,7 @@ class TossupInterface:
|
|
428 |
)
|
429 |
|
430 |
self.hidden_input.change(
|
431 |
-
fn=
|
432 |
inputs=[self.hidden_input, self.output_state],
|
433 |
outputs=[self.confidence_plot],
|
434 |
)
|
|
|
13 |
from workflows.qb.simple_agent import SimpleTossupAgent
|
14 |
from workflows.structs import ModelStep, Workflow
|
15 |
|
16 |
+
from .commons import get_qid_selector
|
17 |
from .plotting import (
|
|
|
|
|
18 |
create_scatter_pyplot,
|
19 |
+
create_tossup_confidence_pyplot,
|
20 |
+
create_tossup_html,
|
21 |
+
update_tossup_plot,
|
22 |
)
|
23 |
+
from .utils import evaluate_prediction
|
24 |
|
25 |
# TODO: Error handling on run tossup and evaluate tossup and show correct messages
|
26 |
# TODO: ^^ Same for Bonus
|
|
|
29 |
def add_model_scores(model_outputs: list[dict], clean_answers: list[str], run_indices: list[int]) -> list[dict]:
|
30 |
"""Add model scores to the model outputs."""
|
31 |
for output, run_idx in zip(model_outputs, run_indices):
|
32 |
+
output["score"] = evaluate_prediction(output["answer"], clean_answers)
|
33 |
output["token_position"] = run_idx + 1
|
34 |
return model_outputs
|
35 |
|
|
|
43 |
return [], []
|
44 |
eval_points = []
|
45 |
for i, v in zip(run_indices, model_outputs):
|
46 |
+
eval_points.append((int(i), v))
|
|
|
47 |
|
48 |
return eval_points
|
49 |
|
50 |
|
51 |
def initialize_eval_interface(example, model_outputs: list[dict]):
|
52 |
"""Initialize the interface with example text."""
|
|
|
|
|
|
|
|
|
53 |
try:
|
54 |
+
tokens = example["question"].split()
|
55 |
+
run_indices = example["run_indices"]
|
56 |
+
answer = example["answer_primary"]
|
57 |
+
clean_answers = example["clean_answers"]
|
58 |
eval_points = prepare_buzz_evals(run_indices, model_outputs)
|
59 |
|
60 |
if not tokens:
|
61 |
return "<div>No tokens found in the provided text.</div>", pd.DataFrame(), "{}"
|
62 |
+
highlighted_index = next((int(i) for i, v in eval_points if v["buzz"] == 1), -1)
|
63 |
+
html_content = create_tossup_html(tokens, answer, clean_answers, run_indices, eval_points)
|
64 |
+
plot_data = create_tossup_confidence_pyplot(tokens, eval_points, highlighted_index)
|
65 |
|
66 |
# Store tokens, values, and buzzes as JSON for later use
|
67 |
state = json.dumps({"tokens": tokens, "values": eval_points})
|
|
|
194 |
label="Early Stop",
|
195 |
info="Stop early if already buzzed",
|
196 |
)
|
|
|
197 |
|
198 |
def _render_qb_interface(self):
|
199 |
"""Render the quizbowl interface."""
|
200 |
+
with gr.Row(elem_classes="bonus-header-row form-inline"):
|
201 |
+
self.qid_selector = get_qid_selector(len(self.ds))
|
202 |
+
self.run_btn = gr.Button("Run on Tossup Question", variant="secondary")
|
203 |
+
self.question_display = gr.HTML(label="Question", elem_id="tossup-question-display")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
with gr.Row():
|
205 |
self.confidence_plot = gr.Plot(
|
206 |
label="Buzz Confidence",
|
|
|
211 |
value=pd.DataFrame(columns=["Token Position", "Correct?", "Confidence", "Prediction"]),
|
212 |
)
|
213 |
with gr.Row():
|
214 |
+
self.eval_btn = gr.Button("Evaluate", variant="primary")
|
215 |
|
216 |
with gr.Accordion("Model Submission", elem_classes="model-submission-accordion", open=True):
|
217 |
with gr.Row():
|
|
|
219 |
self.description_input = gr.Textbox(label="Description")
|
220 |
with gr.Row():
|
221 |
gr.LoginButton()
|
222 |
+
self.submit_btn = gr.Button("Submit", variant="primary")
|
223 |
self.submit_status = gr.HTML(label="Submission Status")
|
224 |
|
225 |
def render(self):
|
|
|
239 |
|
240 |
self._setup_event_listeners()
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def validate_workflow(self, pipeline_state: PipelineState):
|
243 |
"""Validate the workflow."""
|
244 |
try:
|
|
|
246 |
except Exception as e:
|
247 |
raise gr.Error(f"Error validating workflow: {str(e)}")
|
248 |
|
249 |
+
def get_new_question_html(self, question_id: int) -> str:
|
250 |
"""Get the HTML for a new question."""
|
251 |
+
if question_id is None:
|
252 |
+
logging.error("Question ID is None. Setting to 1")
|
253 |
+
question_id = 1
|
254 |
+
try:
|
255 |
+
example = self.ds[question_id - 1]
|
256 |
+
question_tokens = example["question"].split()
|
257 |
+
return create_tossup_html(
|
258 |
+
question_tokens, example["answer_primary"], example["clean_answers"], example["run_indices"]
|
259 |
+
)
|
260 |
+
except Exception as e:
|
261 |
+
return f"Error loading question: {str(e)}"
|
262 |
|
263 |
def get_model_outputs(self, example: dict, pipeline_state: PipelineState, buzz_threshold: float, early_stop: bool):
|
264 |
"""Get the model outputs for a given question ID."""
|
|
|
276 |
outputs = add_model_scores(outputs, example["clean_answers"], example["run_indices"])
|
277 |
return outputs
|
278 |
|
279 |
+
def single_run(
|
280 |
self,
|
281 |
question_id: int,
|
282 |
pipeline_state: PipelineState,
|
|
|
307 |
error_msg = f"Error: {str(e)}\n{traceback.format_exc()}"
|
308 |
return error_msg, None, None
|
309 |
|
310 |
+
def evaluate(self, pipeline_state: PipelineState, buzz_threshold: float, progress: gr.Progress = gr.Progress()):
|
311 |
+
"""Evaluate the tossup questions."""
|
|
|
|
|
312 |
try:
|
313 |
# Validate inputs
|
314 |
if not self.ds or not self.ds.num_rows:
|
|
|
358 |
triggers=[self.app.load, self.qid_selector.change],
|
359 |
fn=self.get_new_question_html,
|
360 |
inputs=[self.qid_selector],
|
361 |
+
outputs=[self.question_display],
|
362 |
)
|
363 |
|
364 |
self.run_btn.click(
|
|
|
366 |
inputs=[self.pipeline_interface.pipeline_state],
|
367 |
outputs=[self.pipeline_interface.pipeline_state],
|
368 |
).success(
|
369 |
+
self.single_run,
|
370 |
inputs=[
|
371 |
self.qid_selector,
|
372 |
self.pipeline_interface.pipeline_state,
|
|
|
382 |
)
|
383 |
|
384 |
self.eval_btn.click(
|
385 |
+
fn=self.evaluate,
|
386 |
inputs=[self.pipeline_interface.pipeline_state, self.buzz_t_slider],
|
387 |
outputs=[self.results_table, self.confidence_plot],
|
388 |
)
|
|
|
398 |
)
|
399 |
|
400 |
self.hidden_input.change(
|
401 |
+
fn=update_tossup_plot,
|
402 |
inputs=[self.hidden_input, self.output_state],
|
403 |
outputs=[self.confidence_plot],
|
404 |
)
|
src/components/quizbowl/utils.py
CHANGED
@@ -3,6 +3,22 @@ from typing import Any, Dict, List
|
|
3 |
import pandas as pd
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def _create_confidence_plot_data(results: List[Dict], top_k_mode: bool = False) -> pd.DataFrame:
|
7 |
"""Create a DataFrame for the confidence plot."""
|
8 |
if not top_k_mode:
|
@@ -59,28 +75,3 @@ def _create_top_k_dataframe(results: List[Dict]) -> pd.DataFrame:
|
|
59 |
}
|
60 |
)
|
61 |
return pd.DataFrame(df_rows)
|
62 |
-
|
63 |
-
|
64 |
-
def _format_buzz_result(buzzed: bool, results: List[Dict], gold_label: str, top_k_mode: bool) -> tuple[str, str, bool]:
|
65 |
-
"""Format the result text based on whether the agent buzzed."""
|
66 |
-
if not buzzed:
|
67 |
-
return f"Did not buzz. Correct answer was: {gold_label}", "No buzz", False
|
68 |
-
|
69 |
-
buzz_position = next(i for i, r in enumerate(results) if r.get("buzz", False))
|
70 |
-
buzz_result = results[buzz_position]
|
71 |
-
|
72 |
-
if top_k_mode:
|
73 |
-
# For top-k, check if any of the top guesses match
|
74 |
-
top_answers = [g.get("answer", "").lower() for g in buzz_result.get("guesses", [])]
|
75 |
-
correct = gold_label.lower() in [a.lower() for a in top_answers]
|
76 |
-
final_answer = top_answers[0] if top_answers else "No answer"
|
77 |
-
else:
|
78 |
-
# For regular mode
|
79 |
-
final_answer = buzz_result["answer"]
|
80 |
-
correct = final_answer.lower() == gold_label.lower()
|
81 |
-
|
82 |
-
result_text = f"BUZZED at position {buzz_position + 1} with answer: {final_answer}\n"
|
83 |
-
result_text += f"Correct answer: {gold_label}\n"
|
84 |
-
result_text += f"Result: {'CORRECT' if correct else 'INCORRECT'}"
|
85 |
-
|
86 |
-
return result_text, final_answer, correct
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
|
6 |
+
def evaluate_prediction(prediction: str, clean_answers: list[str] | str) -> int:
|
7 |
+
"""Evaluate the buzz of a prediction against the clean answers."""
|
8 |
+
if isinstance(clean_answers, str):
|
9 |
+
print("clean_answers is a string")
|
10 |
+
clean_answers = [clean_answers]
|
11 |
+
pred = prediction.lower().strip()
|
12 |
+
if not pred:
|
13 |
+
return 0
|
14 |
+
for answer in clean_answers:
|
15 |
+
answer = answer.strip().lower()
|
16 |
+
if answer and answer in pred:
|
17 |
+
print(f"Found {answer} in {pred}")
|
18 |
+
return 1
|
19 |
+
return 0
|
20 |
+
|
21 |
+
|
22 |
def _create_confidence_plot_data(results: List[Dict], top_k_mode: bool = False) -> pd.DataFrame:
|
23 |
"""Create a DataFrame for the confidence plot."""
|
24 |
if not top_k_mode:
|
|
|
75 |
}
|
76 |
)
|
77 |
return pd.DataFrame(df_rows)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/custom_css.py
CHANGED
@@ -420,7 +420,7 @@ css_tossup = """
|
|
420 |
.token.buzz-1 {
|
421 |
border-color: #228b22; /* Darker and slightly muted green */
|
422 |
}
|
423 |
-
.
|
424 |
line-height: 1.7;
|
425 |
padding: 5px;
|
426 |
margin-left: 4px;
|
@@ -429,4 +429,116 @@ css_tossup = """
|
|
429 |
border-radius: 8px;
|
430 |
margin-bottom: 10px;
|
431 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
"""
|
|
|
420 |
.token.buzz-1 {
|
421 |
border-color: #228b22; /* Darker and slightly muted green */
|
422 |
}
|
423 |
+
.tossup-question {
|
424 |
line-height: 1.7;
|
425 |
padding: 5px;
|
426 |
margin-left: 4px;
|
|
|
429 |
border-radius: 8px;
|
430 |
margin-bottom: 10px;
|
431 |
}
|
432 |
+
|
433 |
+
/* Tooltip styles */
|
434 |
+
.tooltip {
|
435 |
+
display: none;
|
436 |
+
position: fixed; /* Changed to fixed for better positioning */
|
437 |
+
padding: 12px 16px;
|
438 |
+
border-radius: 8px;
|
439 |
+
font-size: 13px;
|
440 |
+
white-space: normal;
|
441 |
+
z-index: 1000;
|
442 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15);
|
443 |
+
min-width: 300px;
|
444 |
+
max-width: 400px;
|
445 |
+
backdrop-filter: blur(4px);
|
446 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
447 |
+
}
|
448 |
+
|
449 |
+
.tooltip-content {
|
450 |
+
color: #2c3e50; /* Darker text for better readability */
|
451 |
+
}
|
452 |
+
|
453 |
+
.tooltip-content div {
|
454 |
+
margin: 4px 0;
|
455 |
+
line-height: 1.4;
|
456 |
+
}
|
457 |
+
|
458 |
+
/* When hovering over a token, show its tooltip */
|
459 |
+
.token:hover .tooltip {
|
460 |
+
display: block;
|
461 |
+
}
|
462 |
+
|
463 |
+
/* Add a small arrow to the tooltip */
|
464 |
+
.tooltip::after {
|
465 |
+
content: '';
|
466 |
+
position: absolute;
|
467 |
+
bottom: -8px;
|
468 |
+
left: 50%;
|
469 |
+
transform: translateX(-50%);
|
470 |
+
border-left: 8px solid transparent;
|
471 |
+
border-right: 8px solid transparent;
|
472 |
+
border-top: 8px solid currentColor;
|
473 |
+
}
|
474 |
+
"""
|
475 |
+
|
476 |
+
css_bonus = """
|
477 |
+
.qid-selector {
|
478 |
+
box-shadow: 0 0 0 0 !important;
|
479 |
+
}
|
480 |
+
.qid-selector input {
|
481 |
+
border-radius: 12px !important;
|
482 |
+
}
|
483 |
+
.bonus-header-row {
|
484 |
+
align-items: flex-end;
|
485 |
+
}
|
486 |
+
.bonus-card {
|
487 |
+
background-color: var(--card-bg-color);
|
488 |
+
border-radius: 12px;
|
489 |
+
padding: 12px;
|
490 |
+
margin: 0px 0px;
|
491 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
492 |
+
}
|
493 |
+
|
494 |
+
.bonus-leadin {
|
495 |
+
font-size: 14px;
|
496 |
+
font-weight: 500;
|
497 |
+
margin-bottom: 12px;
|
498 |
+
line-height: 1.5;
|
499 |
+
}
|
500 |
+
|
501 |
+
.bonus-part {
|
502 |
+
background-color: var(--answer-bg-color);
|
503 |
+
border-radius: 8px;
|
504 |
+
padding: 12px;
|
505 |
+
margin: 8px 0;
|
506 |
+
}
|
507 |
+
|
508 |
+
.bonus-part-number {
|
509 |
+
font-weight: 600;
|
510 |
+
color: #666;
|
511 |
+
margin-bottom: 4px;
|
512 |
+
}
|
513 |
+
|
514 |
+
.bonus-part-text {
|
515 |
+
margin-bottom: 8px;
|
516 |
+
line-height: 1.5;
|
517 |
+
}
|
518 |
+
|
519 |
+
.bonus-answer {
|
520 |
+
background-color: #fff5f5;
|
521 |
+
border-radius: 6px;
|
522 |
+
padding: 8px 12px;
|
523 |
+
margin-top: 8px;
|
524 |
+
font-size: 14px;
|
525 |
+
border-left: 3px solid #ff6b6b;
|
526 |
+
}
|
527 |
+
|
528 |
+
.bonus-answer-label {
|
529 |
+
font-weight: 500;
|
530 |
+
color: #666;
|
531 |
+
margin-bottom: 4px;
|
532 |
+
}
|
533 |
+
|
534 |
+
.bonus-answer-text {
|
535 |
+
color: #333;
|
536 |
+
}
|
537 |
+
|
538 |
+
.bonus-container {
|
539 |
+
max-width: 800px;
|
540 |
+
margin: 0 auto;
|
541 |
+
padding-left: 8px;
|
542 |
+
padding-right: 8px;
|
543 |
+
}
|
544 |
"""
|