Spaces:
Running
Running
File size: 18,458 Bytes
3a1af80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import hashlib
import json
import os
import sqlite3
import threading
import time
from pathlib import Path
from typing import Any, Optional
from datasets import Dataset, Features, Value
from huggingface_hub import snapshot_download
from loguru import logger
def load_dataset_from_hf(repo_id, local_dir):
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=os.environ["HF_TOKEN"],
)
class CacheDB:
"""Handles database operations for storing and retrieving cache entries."""
def __init__(self, db_path: Path):
"""Initialize database connection.
Args:
db_path: Path to SQLite database file
"""
self.db_path = db_path
self.lock = threading.Lock()
# Initialize the database
try:
self.initialize_db()
except Exception as e:
logger.exception(f"Failed to initialize database: {e}")
logger.warning(f"Please provide a different filepath or remove the file at {self.db_path}")
raise
def initialize_db(self) -> None:
"""Initialize SQLite database with the required table."""
# Check if database file already exists
if self.db_path.exists():
self._verify_existing_db()
else:
self._create_new_db()
def _verify_existing_db(self) -> None:
"""Verify and repair an existing database if needed."""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
self._ensure_table_exists(cursor)
self._verify_schema(cursor)
self._ensure_index_exists(cursor)
conn.commit()
logger.info(f"Using existing SQLite database at {self.db_path}")
except Exception as e:
logger.exception(f"Database corruption detected: {e}")
raise ValueError(f"Corrupted database at {self.db_path}: {str(e)}")
def _create_new_db(self) -> None:
"""Create a new database with the required schema."""
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
self._create_table(cursor)
self._ensure_index_exists(cursor)
conn.commit()
logger.info(f"Initialized new SQLite database at {self.db_path}")
except Exception as e:
logger.exception(f"Failed to initialize SQLite database: {e}")
raise
def _ensure_table_exists(self, cursor) -> None:
"""Check if the llm_cache table exists and create it if not."""
cursor.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='llm_cache'")
if not cursor.fetchone():
self._create_table(cursor)
logger.info("Created missing llm_cache table")
def _create_table(self, cursor) -> None:
"""Create the llm_cache table with the required schema."""
cursor.execute("""
CREATE TABLE IF NOT EXISTS llm_cache (
key TEXT PRIMARY KEY,
request_json TEXT,
response_json TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
def _verify_schema(self, cursor) -> None:
"""Verify that the table schema has all required columns."""
cursor.execute("PRAGMA table_info(llm_cache)")
columns = {row[1] for row in cursor.fetchall()}
required_columns = {"key", "request_json", "response_json", "created_at"}
if not required_columns.issubset(columns):
missing = required_columns - columns
raise ValueError(f"Database schema is corrupted. Missing columns: {missing}")
def _ensure_index_exists(self, cursor) -> None:
"""Create an index on the key column for faster lookups."""
cursor.execute("CREATE INDEX IF NOT EXISTS idx_llm_cache_key ON llm_cache (key)")
def get(self, key: str) -> Optional[dict[str, Any]]:
"""Get cached entry by key.
Args:
key: Cache key to look up
Returns:
Dict containing the request and response or None if not found
"""
try:
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute("SELECT request_json, response_json FROM llm_cache WHERE key = ?", (key,))
result = cursor.fetchone()
if result:
logger.debug(f"Cache hit for key: {key}. Response: {result['response_json']}")
return {
"request": result["request_json"],
"response": result["response_json"],
}
logger.debug(f"Cache miss for key: {key}")
return None
except Exception as e:
logger.error(f"Error retrieving from cache: {e}")
return None
def set(self, key: str, request_json: str, response_json: str) -> bool:
"""Set entry in cache.
Args:
key: Cache key
request_json: JSON string of request parameters
response_json: JSON string of response
Returns:
True if successful, False otherwise
"""
with self.lock:
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute(
"INSERT OR REPLACE INTO llm_cache (key, request_json, response_json) VALUES (?, ?, ?)",
(key, request_json, response_json),
)
conn.commit()
logger.debug(f"Saved response to cache with key: {key}, response: {response_json}")
return True
except Exception as e:
logger.error(f"Failed to save to SQLite cache: {e}")
return False
def get_all_entries(self) -> dict[str, dict[str, Any]]:
"""Get all cache entries from the database."""
cache = {}
try:
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute("SELECT key, request_json, response_json FROM llm_cache ORDER BY created_at")
for row in cursor.fetchall():
cache[row["key"]] = {
"request": row["request_json"],
"response": row["response_json"],
}
logger.debug(f"Retrieved {len(cache)} entries from cache database")
return cache
except Exception as e:
logger.error(f"Error retrieving all cache entries: {e}")
return {}
def clear(self) -> bool:
"""Clear all cache entries.
Returns:
True if successful, False otherwise
"""
with self.lock:
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("DELETE FROM llm_cache")
conn.commit()
logger.info("Cache cleared")
return True
except Exception as e:
logger.error(f"Failed to clear cache: {e}")
return False
def get_existing_keys(self) -> set:
"""Get all existing keys in the database.
Returns:
Set of keys
"""
existing_keys = set()
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.execute("SELECT key FROM llm_cache")
for row in cursor.fetchall():
existing_keys.add(row[0])
return existing_keys
except Exception as e:
logger.error(f"Error retrieving existing keys: {e}")
return set()
def bulk_insert(self, items: list, update: bool = False) -> int:
"""Insert multiple items into the cache.
Args:
items: List of (key, request_json, response_json) tuples
update: Whether to update existing entries
Returns:
Number of items inserted
"""
count = 0
UPDATE_OR_IGNORE = "INSERT OR REPLACE" if update else "INSERT OR IGNORE"
with self.lock:
try:
with sqlite3.connect(self.db_path) as conn:
cursor = conn.cursor()
cursor.executemany(
f"{UPDATE_OR_IGNORE} INTO llm_cache (key, request_json, response_json) VALUES (?, ?, ?)",
items,
)
count = cursor.rowcount
conn.commit()
return count
except Exception as e:
logger.error(f"Error during bulk insert: {e}")
return 0
class LLMCache:
def __init__(
self, cache_dir: str = ".", hf_repo: str | None = None, cache_sync_interval: int = 3600, reset: bool = False
):
self.cache_dir = Path(cache_dir)
self.db_path = self.cache_dir / "llm_cache.db"
self.hf_repo_id = hf_repo
self.cache_sync_interval = cache_sync_interval
self.last_sync_time = time.time()
# Create cache directory if it doesn't exist
self.cache_dir.mkdir(exist_ok=True, parents=True)
# Initialize CacheDB
self.db = CacheDB(self.db_path)
if reset:
self.db.clear()
# Try to load from HF dataset if available
try:
self._load_cache_from_hf()
except Exception as e:
logger.warning(f"Failed to load cache from HF dataset: {e}")
def response_format_to_dict(self, response_format: Any) -> dict[str, Any]:
"""Convert a response format to a dict."""
# If it's a Pydantic model, use its schema
if hasattr(response_format, "model_json_schema"):
response_format = response_format.model_json_schema()
# If it's a Pydantic model, use its dump
elif hasattr(response_format, "model_dump"):
response_format = response_format.model_dump()
if not isinstance(response_format, dict):
response_format = {"value": str(response_format)}
return response_format
def _generate_key(
self, model: str, system: str, prompt: str, response_format: Any, temperature: float | None = None
) -> str:
"""Generate a unique key for caching based on inputs."""
response_format_dict = self.response_format_to_dict(response_format)
response_format_str = json.dumps(response_format_dict, sort_keys=True)
# Include temperature in the key
key_content = f"{model}:{system}:{prompt}:{response_format_str}"
if temperature is not None:
key_content += f":{temperature:.2f}"
return hashlib.md5(key_content.encode()).hexdigest()
def _create_request_json(
self, model: str, system: str, prompt: str, response_format: Any, temperature: float | None
) -> str:
"""Create JSON string from request parameters."""
logger.info(f"Creating request JSON with temperature: {temperature}")
request_data = {
"model": model,
"system": system,
"prompt": prompt,
"response_format": self.response_format_to_dict(response_format),
"temperature": temperature,
}
return json.dumps(request_data)
def _check_request_match(
self,
cached_request: dict[str, Any],
model: str,
system: str,
prompt: str,
response_format: Any,
temperature: float | None,
) -> bool:
"""Check if the cached request matches the new request."""
# Check each field and log any mismatches
if cached_request["model"] != model:
logger.debug(f"Cache mismatch: model - cached: {cached_request['model']}, new: {model}")
return False
if cached_request["system"] != system:
logger.debug(f"Cache mismatch: system - cached: {cached_request['system']}, new: {system}")
return False
if cached_request["prompt"] != prompt:
logger.debug(f"Cache mismatch: prompt - cached: {cached_request['prompt']}, new: {prompt}")
return False
response_format_dict = self.response_format_to_dict(response_format)
if cached_request["response_format"] != response_format_dict:
logger.debug(
f"Cache mismatch: response_format - cached: {cached_request['response_format']}, new: {response_format_dict}"
)
return False
if cached_request["temperature"] != temperature:
logger.debug(f"Cache mismatch: temperature - cached: {cached_request['temperature']}, new: {temperature}")
return False
return True
def get(
self, model: str, system: str, prompt: str, response_format: dict[str, Any], temperature: float | None = None
) -> Optional[dict[str, Any]]:
"""Get cached response if it exists."""
key = self._generate_key(model, system, prompt, response_format, temperature)
result = self.db.get(key)
if not result:
return None
request_dict = json.loads(result["request"])
if not self._check_request_match(request_dict, model, system, prompt, response_format, temperature):
logger.warning(f"Cached request does not match new request for key: {key}")
return None
return json.loads(result["response"])
def set(
self,
model: str,
system: str,
prompt: str,
response_format: dict[str, Any],
temperature: float | None,
response: dict[str, Any],
) -> None:
"""Set response in cache and sync if needed."""
key = self._generate_key(model, system, prompt, response_format, temperature)
request_json = self._create_request_json(model, system, prompt, response_format, temperature)
response_json = json.dumps(response)
success = self.db.set(key, request_json, response_json)
# Check if we should sync to HF
if success and self.hf_repo_id and (time.time() - self.last_sync_time > self.cache_sync_interval):
try:
self.sync_to_hf()
self.last_sync_time = time.time()
except Exception as e:
logger.error(f"Failed to sync cache to HF dataset: {e}")
def _load_cache_from_hf(self) -> None:
"""Load cache from HF dataset if it exists and merge with local cache."""
if not self.hf_repo_id:
return
try:
# Check for new commits before loading the dataset
dataset = load_dataset_from_hf(self.hf_repo_id, self.cache_dir / "hf_cache")
if dataset:
existing_keys = self.db.get_existing_keys()
# Prepare batch items for insertion
items_to_insert = []
for item in dataset:
key = item["key"]
# Only update if not in local cache to prioritize local changes
if key in existing_keys:
continue
# Create request JSON
request_data = {
"model": item["model"],
"system": item["system"],
"prompt": item["prompt"],
"temperature": item["temperature"],
"response_format": None, # We can't fully reconstruct this
}
items_to_insert.append(
(
key,
json.dumps(request_data),
item["response"], # This is already a JSON string
)
)
logger.info(
f"Inserting item: {key} with temperature: {item['temperature']} and response: {item['response']}"
)
# Bulk insert new items
if items_to_insert:
inserted_count = self.db.bulk_insert(items_to_insert)
logger.info(f"Merged {inserted_count} items from HF dataset into SQLite cache")
else:
logger.info("No new items to merge from HF dataset")
except Exception as e:
logger.warning(f"Could not load cache from HF dataset: {e}")
def get_all_entries(self) -> dict[str, dict[str, Any]]:
"""Get all cache entries from the database."""
cache = self.db.get_all_entries()
entries = {}
for key, entry in cache.items():
request = json.loads(entry["request"])
response = json.loads(entry["response"])
entries[key] = {"request": request, "response": response}
return entries
def sync_to_hf(self) -> None:
"""Sync cache to HF dataset."""
if not self.hf_repo_id:
return
# Get all entries from the database
cache = self.db.get_all_entries()
# Convert cache to dataset format
entries = []
for key, entry in cache.items():
request = json.loads(entry["request"])
response_str = entry["response"]
entries.append(
{
"key": key,
"model": request["model"],
"system": request["system"],
"prompt": request["prompt"],
"response_format": request["response_format"],
"temperature": request["temperature"],
"response": response_str,
}
)
# Create and push dataset
dataset = Dataset.from_list(entries)
dataset.push_to_hub(self.hf_repo_id, private=True)
logger.info(f"Synced {len(cache)} cached items to HF dataset {self.hf_repo_id}")
def clear(self) -> None:
"""Clear all cache entries."""
self.db.clear()
|