File size: 5,554 Bytes
193db9d
0bab47c
 
 
 
 
 
 
 
 
 
193db9d
 
 
 
 
 
1eeda1d
 
 
 
 
 
 
 
 
 
 
 
 
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bab47c
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bab47c
 
 
 
 
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bab47c
193db9d
 
 
 
 
 
 
 
 
 
 
0bab47c
193db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# %%
from .structs import (
    Buzzer,
    BuzzerMethod,
    CallType,
    InputField,
    ModelStep,
    OutputField,
    TossupWorkflow,
    Workflow,
)

INITIAL_SYS_PROMPT = """You are a  helpful performant question answering bot.
Given a question clue, output your most likely guess in a couple words with a calibrated confidence for the guess.
"""


def create_empty_bonus_workflow():
    return Workflow(
        inputs=["leadin", "part"],
        outputs={"answer": None, "confidence": None, "explanation": None},
        steps={},
    )


def create_empty_tossup_workflow():
    return TossupWorkflow(
        inputs=["question_text"],
        outputs={"answer": None, "confidence": None},
        steps={},
    )


def create_first_step_input_fields() -> list[InputField]:
    return [
        InputField(
            name="question",
            description="The question text progressively revealed to the agent so far.",
            variable="question_text",
        )
    ]


def create_empty_input_field() -> list[InputField]:
    return [InputField(name="", description="", variable="question_text")]


def create_quizbowl_simple_step_initial_setup():
    return ModelStep(
        id="simple_step",
        name="Quizbowl Simple Step",
        model="",
        provider="",
        temperature=0.7,
        call_type="llm",
        system_prompt=INITIAL_SYS_PROMPT,
        input_fields=[
            InputField(name="question", description="The question to answer", variable="question"),
        ],
        output_fields=[
            OutputField(name="answer", description="The most likely answer", type="str"),
            OutputField(name="confidence", description="The confidence of the answer", type="float"),
        ],
    )


def create_new_llm_step(step_id: str, name: str) -> ModelStep:
    return ModelStep(
        id=step_id,
        name=name,
        model="gpt-4o",
        provider="OpenAI",
        call_type="llm",
        temperature=0.7,
        system_prompt="",
        input_fields=create_empty_input_field(),
        output_fields=[OutputField(name="", description="")],
    )


def create_first_llm_step() -> ModelStep:
    return ModelStep(
        id="A",
        name="",
        model="gpt-4o",
        provider="OpenAI",
        call_type="llm",
        temperature=0.7,
        system_prompt="",
        input_fields=[create_first_step_input_fields()],
        output_fields=[OutputField(name="", description="")],
    )


def create_simple_qb_tossup_workflow():
    return TossupWorkflow(
        inputs=["question_text"],
        outputs={"answer": "A.answer", "confidence": "A.confidence"},
        steps={
            "A": ModelStep(
                id="A",
                name="Tossup Agent",
                model="gpt-4o-mini",
                provider="OpenAI",
                call_type="llm",
                temperature=0.3,
                system_prompt="You are a helpful assistant that can answer questions.",
                input_fields=[InputField(name="question", description="The question text", variable="question_text")],
                output_fields=[
                    OutputField(
                        name="answer",
                        description="The best guess at the answer to the question",
                        type="str",
                    ),
                    OutputField(
                        name="confidence",
                        description="The confidence in the answer, ranging from 0 to 1 in increments of 0.05.",
                        type="float",
                    ),
                ],
            )
        },
        buzzer=Buzzer(
            confidence_threshold=0.75,
            prob_threshold=None,
            method=BuzzerMethod.AND,
        ),
    )


BONUS_SYS_PROMPT = """You are a quizbowl player answering bonus questions. For each part:
1. Read the leadin and part carefully
2. Provide a concise answer
3. Rate your confidence (0-1)
4. Explain your reasoning

Format your response as:
ANSWER: <your answer>
CONFIDENCE: <0-1>
EXPLANATION: <your reasoning>"""


def create_simple_qb_bonus_workflow() -> Workflow:
    """Create a simple model step for bonus questions."""
    return Workflow(
        inputs=["leadin", "part"],
        outputs={"answer": "A.answer", "confidence": "A.confidence", "explanation": "A.explanation"},
        steps={
            "A": ModelStep(
                id="A",
                name="Bonus Agent",
                model="gpt-4o-mini",
                provider="OpenAI",
                temperature=0.3,
                call_type=CallType.LLM,
                system_prompt=BONUS_SYS_PROMPT,
                input_fields=[
                    InputField(
                        name="question_leadin",
                        description="The leadin text for the bonus question",
                        variable="leadin",
                    ),
                    InputField(
                        name="question_part",
                        description="The specific part text to answer",
                        variable="part",
                    ),
                ],
                output_fields=[
                    OutputField(name="answer", description="The predicted answer", type="str"),
                    OutputField(name="confidence", description="Confidence in the answer (0-1)", type="float"),
                    OutputField(name="explanation", description="Short explanation for the answer", type="str"),
                ],
            )
        },
    )