Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from openai import OpenAI
|
4 |
+
from PyPDF2 import PdfReader
|
5 |
+
from docx import Document
|
6 |
+
import re
|
7 |
+
|
8 |
+
# Securely get the API key from environment variables
|
9 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
10 |
+
base_url = "https://api.aimlapi.com/v1"
|
11 |
+
llama_model = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
|
12 |
+
|
13 |
+
# Initialize the OpenAI API
|
14 |
+
api = OpenAI(api_key=api_key, base_url=base_url)
|
15 |
+
|
16 |
+
# Function to extract text from a PDF file
|
17 |
+
def extract_text_from_pdf(pdf_file):
|
18 |
+
reader = PdfReader(pdf_file)
|
19 |
+
text = ""
|
20 |
+
for page in reader.pages:
|
21 |
+
text += page.extract_text()
|
22 |
+
return text
|
23 |
+
|
24 |
+
# Function to extract user details from CV (e.g., Name, Contact Info, etc.)
|
25 |
+
def extract_user_details(cv_text):
|
26 |
+
lines = cv_text.splitlines()
|
27 |
+
name = lines[0] if len(lines) > 0 else "Name Not Found"
|
28 |
+
title = lines[1] if len(lines) > 1 else "Title Not Found"
|
29 |
+
contact_info = lines[2] if len(lines) > 2 else "Contact Info Not Found"
|
30 |
+
|
31 |
+
return name, title, contact_info
|
32 |
+
|
33 |
+
# Function to match and regenerate CV content
|
34 |
+
def regenerate_cv(cv_text, job_description):
|
35 |
+
system_prompt = "You are a world class pro CV writing assistant."
|
36 |
+
user_prompt = (f"Here is a CV: {cv_text}\n\n"
|
37 |
+
f"And here is the job description: {job_description}\n\n"
|
38 |
+
"Please regenerate the CV according to the job description, "
|
39 |
+
"fill the gaps, add all sufficient skills that match the job description and provide it in a professional US template that has the highest possible ATS score.")
|
40 |
+
|
41 |
+
completion = api.chat.completions.create(
|
42 |
+
model=llama_model,
|
43 |
+
messages=[
|
44 |
+
{"role": "system", "content": system_prompt},
|
45 |
+
{"role": "user", "content": user_prompt},
|
46 |
+
],
|
47 |
+
temperature=0.7,
|
48 |
+
max_tokens=4096, # Increase max_tokens to handle larger outputs
|
49 |
+
)
|
50 |
+
|
51 |
+
response = completion.choices[0].message.content
|
52 |
+
return response
|
53 |
+
|
54 |
+
# Function to generate the interview preparation note
|
55 |
+
def generate_interview_note(cv_text, updated_cv_text):
|
56 |
+
system_prompt = "You are a world class pro interview preparation assistant."
|
57 |
+
user_prompt = (f"Here is the original CV: {cv_text}\n\n"
|
58 |
+
f"Here is the updated CV: {updated_cv_text}\n\n"
|
59 |
+
"Identify the changes made and provide a list of topics the candidate should prepare for the interview based on the updates in a very concise and professional manner with proper headings and bullet points.")
|
60 |
+
|
61 |
+
completion = api.chat.completions.create(
|
62 |
+
model=llama_model,
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": system_prompt},
|
65 |
+
{"role": "user", "content": user_prompt},
|
66 |
+
],
|
67 |
+
temperature=0.7,
|
68 |
+
max_tokens=1024,
|
69 |
+
)
|
70 |
+
|
71 |
+
response = completion.choices[0].message.content
|
72 |
+
return response
|
73 |
+
|
74 |
+
# Function to calculate ATS score
|
75 |
+
def calculate_ats_score(cv_text, job_description):
|
76 |
+
job_keywords = re.findall(r'\b\w+\b', job_description.lower())
|
77 |
+
cv_keywords = re.findall(r'\b\w+\b', cv_text.lower())
|
78 |
+
|
79 |
+
matching_keywords = set(job_keywords) & set(cv_keywords)
|
80 |
+
ats_score = len(matching_keywords) / len(set(job_keywords)) * 100
|
81 |
+
return round(ats_score, 2)
|
82 |
+
|
83 |
+
# Function to create and save the regenerated CV as DOCX (formatted)
|
84 |
+
def create_formatted_cv(cv_text, file_name="Updated_CV.docx"):
|
85 |
+
doc = Document()
|
86 |
+
|
87 |
+
# Extract user details (name, title, contact info)
|
88 |
+
name, title, contact_info = extract_user_details(cv_text)
|
89 |
+
|
90 |
+
# Adding CV content with formatting
|
91 |
+
doc.add_heading(name, level=1)
|
92 |
+
doc.add_paragraph(title)
|
93 |
+
doc.add_paragraph(contact_info)
|
94 |
+
|
95 |
+
# Split the CV into sections
|
96 |
+
sections = cv_text.split('\n\n')
|
97 |
+
|
98 |
+
# Define headings for each section based on the template
|
99 |
+
headings = ["ACHIEVEMENTS", "EDUCATION", "SKILLS", "WORK EXPERIENCE", "VOLUNTEER EXPERIENCE", "HACKATHON PROJECTS", "WORKSHOPS AND WEBINARS"]
|
100 |
+
|
101 |
+
for section in sections:
|
102 |
+
for heading in headings:
|
103 |
+
if heading in section.upper():
|
104 |
+
doc.add_heading(heading, level=2)
|
105 |
+
doc.add_paragraph(section)
|
106 |
+
|
107 |
+
# Save the document
|
108 |
+
doc.save(file_name)
|
109 |
+
return file_name
|
110 |
+
|
111 |
+
# Function to process the CV and generate outputs
|
112 |
+
def process_cv(cv_pdf, job_description):
|
113 |
+
# Extract text from the uploaded CV PDF
|
114 |
+
cv_text = extract_text_from_pdf(cv_pdf)
|
115 |
+
|
116 |
+
# Calculate initial ATS score
|
117 |
+
initial_ats_score = calculate_ats_score(cv_text, job_description)
|
118 |
+
|
119 |
+
# Regenerate the CV
|
120 |
+
updated_cv_text = regenerate_cv(cv_text, job_description)
|
121 |
+
|
122 |
+
# Calculate updated ATS score
|
123 |
+
updated_ats_score = calculate_ats_score(updated_cv_text, job_description)
|
124 |
+
|
125 |
+
# Generate interview preparation note
|
126 |
+
interview_note = generate_interview_note(cv_text, updated_cv_text)
|
127 |
+
|
128 |
+
# Create and save the formatted CV
|
129 |
+
formatted_cv_path = create_formatted_cv(updated_cv_text)
|
130 |
+
|
131 |
+
# Create the interview notes file
|
132 |
+
interview_notes_path = "Interview_Notes.txt"
|
133 |
+
with open(interview_notes_path, "w") as f:
|
134 |
+
f.write(interview_note)
|
135 |
+
|
136 |
+
return updated_cv_text, initial_ats_score, updated_ats_score, interview_note, formatted_cv_path, interview_notes_path
|
137 |
+
|
138 |
+
# Define the Gradio app
|
139 |
+
def app_interface():
|
140 |
+
with gr.Blocks() as interface:
|
141 |
+
gr.Markdown("### **HireFit** By team Mixed Intelligence")
|
142 |
+
|
143 |
+
# Short description
|
144 |
+
gr.Markdown("""
|
145 |
+
**Version 1.0**
|
146 |
+
|
147 |
+
This project takes your CV and job description, then provides a new CV optimized for the specific job description. It also highlights gaps in your CV and provides detailed interview preparation notes to help you succeed.
|
148 |
+
""")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
# Left panel
|
152 |
+
with gr.Column(scale=1):
|
153 |
+
gr.Markdown("### Upload and Generate")
|
154 |
+
cv_pdf = gr.File(label="Upload Your CV (PDF)")
|
155 |
+
job_description = gr.Textbox(label="Paste Job Description")
|
156 |
+
process_btn = gr.Button("Regenerate CV", elem_id="process_btn")
|
157 |
+
|
158 |
+
# Middle panel
|
159 |
+
with gr.Column(scale=2):
|
160 |
+
gr.Markdown("### Regenerated CV and Interview Notes")
|
161 |
+
updated_cv_text = gr.Textbox(label="Regenerated CV", lines=20, interactive=False)
|
162 |
+
interview_note = gr.Textbox(label="Interview Preparation Notes", lines=10, interactive=False)
|
163 |
+
|
164 |
+
# Right panel
|
165 |
+
with gr.Column(scale=1):
|
166 |
+
gr.Markdown("### ATS Scores")
|
167 |
+
ats_score_before = gr.Number(label="Original ATS Score", value=0)
|
168 |
+
ats_score_after = gr.Number(label="Updated ATS Score", value=0)
|
169 |
+
|
170 |
+
# Adding download buttons to the right panel
|
171 |
+
download_cv_btn = gr.File(label="Download Updated CV", elem_id="download_cv_btn")
|
172 |
+
download_notes_btn = gr.File(label="Download Interview Notes", elem_id="download_notes_btn")
|
173 |
+
|
174 |
+
# Button click event
|
175 |
+
process_btn.click(
|
176 |
+
fn=process_cv,
|
177 |
+
inputs=[cv_pdf, job_description],
|
178 |
+
outputs=[updated_cv_text, ats_score_before, ats_score_after, interview_note, download_cv_btn, download_notes_btn]
|
179 |
+
)
|
180 |
+
|
181 |
+
return interface
|
182 |
+
|
183 |
+
if __name__ == "__main__":
|
184 |
+
app_interface().launch()
|