turkishtts / app.py
umarigan's picture
Create app.py
1144e23 verified
raw
history blame
1.21 kB
import gradio as gr
from transformers import pipeline
from datasets import load_dataset
import soundfile as sf
import torch
# Initialize the text-to-speech pipeline
synthesiser = pipeline("text-to-speech", "umarigan/speecht5_tts_tr_v1.0")
# Load the speaker embedding dataset
embeddings_dataset = load_dataset("umarigan/turkish_voice_dataset_embedded", split="train")
# Define the speech generation function
def generate_speech(text, speaker_id):
speaker_embedding = torch.tensor(embeddings_dataset[speaker_id]["speaker_embeddings"]).unsqueeze(0)
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
# Save the generated audio to a file
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
# Return the audio file path to Gradio
return "speech.wav"
# Define the Gradio interface
inputs = [
gr.Textbox(label="Enter Text", placeholder="Bir berber bir berbere gel beraber bir berber kuralım demiş"),
gr.Number(label="Speaker ID", value=736, precision=0)
]
outputs = gr.Audio(label="Generated Speech")
gr.Interface(fn=generate_speech, inputs=inputs, outputs=outputs, title="Turkish Text-to-Speech").launch()