akdeniz27 commited on
Commit
a931c89
1 Parent(s): 8961cd3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -20,7 +20,7 @@ model_list = ['akdeniz27/bert-base-turkish-cased-ner',
20
  'akdeniz27/convbert-base-turkish-cased-ner',
21
  'akdeniz27/xlm-roberta-base-turkish-ner',
22
  'xlm-roberta-large-finetuned-conll03-english',
23
- 'tner/tner-xlm-roberta-base-ontonotes5']
24
 
25
  st.sidebar.header("Select NER Model")
26
  model_checkpoint = st.sidebar.radio("", model_list)
@@ -30,7 +30,7 @@ st.sidebar.write("")
30
 
31
  if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
32
  aggregation = "simple"
33
- elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english" or model_checkpoint == "tner/tner-xlm-roberta-base-ontonotes5":
34
  aggregation = "simple"
35
  st.sidebar.write("")
36
  st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.")
@@ -101,7 +101,7 @@ if Run_Button and input_text != "":
101
  spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"]
102
 
103
  for ent in spacy_display["ents"]:
104
- if model_checkpoint == "tner/tner-xlm-roberta-base-ontonotes5":
105
  ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])]
106
  else:
107
  if ent["label"] == "PER": ent["label"] = "PERSON"
 
20
  'akdeniz27/convbert-base-turkish-cased-ner',
21
  'akdeniz27/xlm-roberta-base-turkish-ner',
22
  'xlm-roberta-large-finetuned-conll03-english',
23
+ 'asahi417/tner-xlm-roberta-base-ontonotes5']
24
 
25
  st.sidebar.header("Select NER Model")
26
  model_checkpoint = st.sidebar.radio("", model_list)
 
30
 
31
  if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
32
  aggregation = "simple"
33
+ elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english" or model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5":
34
  aggregation = "simple"
35
  st.sidebar.write("")
36
  st.sidebar.write("The selected NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta pretrained language model.")
 
101
  spacy_entity_list = ["PERSON", "NORP", "FAC", "ORG", "GPE", "LOC", "PRODUCT", "EVENT", "WORK_OF_ART", "LAW", "LANGUAGE", "DATE", "TIME", "PERCENT", "MONEY", "QUANTITY", "ORDINAL", "CARDINAL", "MISC"]
102
 
103
  for ent in spacy_display["ents"]:
104
+ if model_checkpoint == "asahi417/tner-xlm-roberta-base-ontonotes5":
105
  ent["label"] = spacy_entity_list[tner_entity_list.index(ent["label"])]
106
  else:
107
  if ent["label"] == "PER": ent["label"] = "PERSON"