akdeniz27 commited on
Commit
a834bc3
1 Parent(s): 8d47d74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -12
app.py CHANGED
@@ -17,26 +17,22 @@ Pfizer, aşının güvenli ve etkili olduğunun klinik olarak da kanıtlanması
17
  st.set_page_config(layout="wide")
18
 
19
  st.title("Demo for Turkish NER Models")
20
- st.write("For details of models: 'https://huggingface.co/akdeniz27/")
21
- st.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
22
 
23
  model_list = ['akdeniz27/bert-base-turkish-cased-ner',
24
  'akdeniz27/convbert-base-turkish-cased-ner',
25
  'akdeniz27/xlm-roberta-base-turkish-ner',
26
- 'akdeniz27/mDeBERTa-v3-base-turkish-ner',
27
  'xlm-roberta-large-finetuned-conll03-english']
28
 
29
  st.sidebar.header("Select NER Model")
30
  model_checkpoint = st.sidebar.radio("", model_list)
31
 
32
- st.sidebar.write("")
33
- st.sidebar.write("")
34
  st.sidebar.write("")
35
 
36
  xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
37
 
38
  st.sidebar.header("Select Aggregation Strategy Type")
39
- if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner" or model_checkpoint == "akdeniz27/mDeBERTa-v3-base-turkish-ner":
40
  aggregation = st.sidebar.radio("", ('simple', 'none'))
41
  st.sidebar.write(xlm_agg_strategy_info)
42
  elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
@@ -46,6 +42,8 @@ elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
46
  st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
47
  else:
48
  aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
 
 
49
 
50
  st.subheader("Select Text Input Method")
51
  input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
@@ -59,12 +57,8 @@ elif input_method == "Write or Paste New Text":
59
 
60
  @st.cache(allow_output_mutation=True)
61
  def setModel(model_checkpoint, aggregation):
62
- if model_checkpoint == "akdeniz27/mDeBERTa-v3-base-turkish-ner":
63
- model = DebertaV2Model.from_pretrained(model_checkpoint)
64
- tokenizer = DebertaV2Tokenizer.from_pretrained(model_checkpoint)
65
- else:
66
- model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
67
- tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
68
  return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
69
 
70
  @st.cache(allow_output_mutation=True)
 
17
  st.set_page_config(layout="wide")
18
 
19
  st.title("Demo for Turkish NER Models")
 
 
20
 
21
  model_list = ['akdeniz27/bert-base-turkish-cased-ner',
22
  'akdeniz27/convbert-base-turkish-cased-ner',
23
  'akdeniz27/xlm-roberta-base-turkish-ner',
 
24
  'xlm-roberta-large-finetuned-conll03-english']
25
 
26
  st.sidebar.header("Select NER Model")
27
  model_checkpoint = st.sidebar.radio("", model_list)
28
 
29
+ st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
 
30
  st.sidebar.write("")
31
 
32
  xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
33
 
34
  st.sidebar.header("Select Aggregation Strategy Type")
35
+ if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
36
  aggregation = st.sidebar.radio("", ('simple', 'none'))
37
  st.sidebar.write(xlm_agg_strategy_info)
38
  elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
 
42
  st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
43
  else:
44
  aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
45
+
46
+ st.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
47
 
48
  st.subheader("Select Text Input Method")
49
  input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
 
57
 
58
  @st.cache(allow_output_mutation=True)
59
  def setModel(model_checkpoint, aggregation):
60
+ model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
61
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
 
 
 
 
62
  return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
63
 
64
  @st.cache(allow_output_mutation=True)