Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -17,26 +17,22 @@ Pfizer, aşının güvenli ve etkili olduğunun klinik olarak da kanıtlanması
|
|
17 |
st.set_page_config(layout="wide")
|
18 |
|
19 |
st.title("Demo for Turkish NER Models")
|
20 |
-
st.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
21 |
-
st.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
22 |
|
23 |
model_list = ['akdeniz27/bert-base-turkish-cased-ner',
|
24 |
'akdeniz27/convbert-base-turkish-cased-ner',
|
25 |
'akdeniz27/xlm-roberta-base-turkish-ner',
|
26 |
-
'akdeniz27/mDeBERTa-v3-base-turkish-ner',
|
27 |
'xlm-roberta-large-finetuned-conll03-english']
|
28 |
|
29 |
st.sidebar.header("Select NER Model")
|
30 |
model_checkpoint = st.sidebar.radio("", model_list)
|
31 |
|
32 |
-
st.sidebar.write("")
|
33 |
-
st.sidebar.write("")
|
34 |
st.sidebar.write("")
|
35 |
|
36 |
xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
37 |
|
38 |
st.sidebar.header("Select Aggregation Strategy Type")
|
39 |
-
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner"
|
40 |
aggregation = st.sidebar.radio("", ('simple', 'none'))
|
41 |
st.sidebar.write(xlm_agg_strategy_info)
|
42 |
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
|
@@ -46,6 +42,8 @@ elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
|
|
46 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
47 |
else:
|
48 |
aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
|
|
|
|
|
49 |
|
50 |
st.subheader("Select Text Input Method")
|
51 |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
|
@@ -59,12 +57,8 @@ elif input_method == "Write or Paste New Text":
|
|
59 |
|
60 |
@st.cache(allow_output_mutation=True)
|
61 |
def setModel(model_checkpoint, aggregation):
|
62 |
-
|
63 |
-
|
64 |
-
tokenizer = DebertaV2Tokenizer.from_pretrained(model_checkpoint)
|
65 |
-
else:
|
66 |
-
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
67 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
68 |
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
|
69 |
|
70 |
@st.cache(allow_output_mutation=True)
|
|
|
17 |
st.set_page_config(layout="wide")
|
18 |
|
19 |
st.title("Demo for Turkish NER Models")
|
|
|
|
|
20 |
|
21 |
model_list = ['akdeniz27/bert-base-turkish-cased-ner',
|
22 |
'akdeniz27/convbert-base-turkish-cased-ner',
|
23 |
'akdeniz27/xlm-roberta-base-turkish-ner',
|
|
|
24 |
'xlm-roberta-large-finetuned-conll03-english']
|
25 |
|
26 |
st.sidebar.header("Select NER Model")
|
27 |
model_checkpoint = st.sidebar.radio("", model_list)
|
28 |
|
29 |
+
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
|
|
30 |
st.sidebar.write("")
|
31 |
|
32 |
xlm_agg_strategy_info = "'aggregation_strategy' can be selected as 'simple' or 'none' for 'xlm-roberta' because of the RoBERTa model's tokenization approach."
|
33 |
|
34 |
st.sidebar.header("Select Aggregation Strategy Type")
|
35 |
+
if model_checkpoint == "akdeniz27/xlm-roberta-base-turkish-ner":
|
36 |
aggregation = st.sidebar.radio("", ('simple', 'none'))
|
37 |
st.sidebar.write(xlm_agg_strategy_info)
|
38 |
elif model_checkpoint == "xlm-roberta-large-finetuned-conll03-english":
|
|
|
42 |
st.sidebar.write("This English NER model is included just to show the zero-shot transfer learning capability of XLM-Roberta.")
|
43 |
else:
|
44 |
aggregation = st.sidebar.radio("", ('first', 'simple', 'average', 'max', 'none'))
|
45 |
+
|
46 |
+
st.write("Please refer 'https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html' for entity grouping with aggregation_strategy parameter.")
|
47 |
|
48 |
st.subheader("Select Text Input Method")
|
49 |
input_method = st.radio("", ('Select from Examples', 'Write or Paste New Text'))
|
|
|
57 |
|
58 |
@st.cache(allow_output_mutation=True)
|
59 |
def setModel(model_checkpoint, aggregation):
|
60 |
+
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
|
|
|
|
|
|
|
|
62 |
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
|
63 |
|
64 |
@st.cache(allow_output_mutation=True)
|