Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
import PyPDF2 | |
import docx | |
import io | |
import re | |
def chunk_text(text, chunk_size=128): | |
words = text.split() | |
chunks = [] | |
current_chunk = [] | |
current_length = 0 | |
for word in words: | |
if current_length + len(word) + 1 > chunk_size: | |
chunks.append(' '.join(current_chunk)) | |
current_chunk = [word] | |
current_length = len(word) | |
else: | |
current_chunk.append(word) | |
current_length += len(word) + 1 | |
if current_chunk: | |
chunks.append(' '.join(current_chunk)) | |
return chunks | |
st.set_page_config(layout="wide") | |
# Function to read text from uploaded file | |
def read_file(file): | |
if file.type == "text/plain": | |
return file.getvalue().decode("utf-8") | |
elif file.type == "application/pdf": | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue())) | |
return " ".join(page.extract_text() for page in pdf_reader.pages) | |
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
doc = docx.Document(io.BytesIO(file.getvalue())) | |
return " ".join(paragraph.text for paragraph in doc.paragraphs) | |
else: | |
st.error("Unsupported file type") | |
return None | |
st.title("Turkish NER Models Testing") | |
model_list = [ | |
'girayyagmur/bert-base-turkish-ner-cased', | |
'asahi417/tner-xlm-roberta-base-ontonotes5' | |
] | |
st.sidebar.header("Select NER Model") | |
model_checkpoint = st.sidebar.radio("", model_list) | |
#st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/") | |
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.") | |
# Determine aggregation strategy | |
aggregation = "simple" if model_checkpoint in ["asahi417/tner-xlm-roberta-base-ontonotes5"] else "first" | |
st.subheader("Select Text Input Method") | |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File')) | |
if input_method == "Write or Paste New Text": | |
input_text = st.text_area('Write or Paste Text Below', value="", height=128) | |
else: | |
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"]) | |
if uploaded_file is not None: | |
input_text = read_file(uploaded_file) | |
if input_text: | |
st.text_area("Extracted Text", input_text, height=128) | |
else: | |
input_text = "" | |
def setModel(model_checkpoint, aggregation): | |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation) | |
def entity_comb(output): | |
output_comb = [] | |
for ind, entity in enumerate(output): | |
if ind == 0: | |
output_comb.append(entity) | |
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]: | |
output_comb[-1]["word"] += output[ind]["word"] | |
output_comb[-1]["end"] = output[ind]["end"] | |
else: | |
output_comb.append(entity) | |
return output_comb | |
def create_mask_dict(entities, additional_masks=None): | |
mask_dict = {} | |
entity_counters = {} | |
for entity in entities: | |
if entity['entity_group'] not in ['CARDINAL', 'EVENT', 'PERCENT', 'QUANTITY', 'DATE', 'TITLE', 'WORK_OF_ART']: | |
if entity['word'] not in mask_dict: # Corrected indentation | |
if entity['entity_group'] not in entity_counters: | |
entity_counters[entity['entity_group']] = 1 | |
else: | |
entity_counters[entity['entity_group']] += 1 | |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}" | |
if additional_masks: | |
for word, replacement in additional_masks.items(): | |
mask_dict[word] = replacement | |
return mask_dict | |
def replace_words_in_text(input_text, entities): | |
replace_dict = create_mask_dict(entities) | |
for word, replacement in replace_dict.items(): | |
input_text = input_text.replace(word, replacement) | |
return input_text | |
# Function to mask email, phone, and address patterns | |
def mask_patterns(text): | |
masks = {} | |
# Email pattern | |
email_pattern = r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}" | |
emails = re.findall(email_pattern, text) | |
for email in emails: | |
masks[email] = "<EMAIL>" | |
#Phone pattern (Turkish) | |
#phone_pattern = r"\+90\d{10}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}\b" | |
phone_pattern = r"\b(0?5\d{2}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b5\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2}|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{2}[-.\s]?\d{2})\b" | |
phones = re.findall(phone_pattern, text) | |
for phone in phones: | |
masks[phone] = "<PHONE>" | |
# Replace patterns in text | |
for word, replacement in masks.items(): | |
text = text.replace(word, replacement) | |
return text, masks | |
Run_Button = st.button("Run") | |
if Run_Button and input_text: | |
ner_pipeline = setModel(model_checkpoint, aggregation) | |
# Chunk the input text | |
chunks = chunk_text(input_text) | |
# Process each chunk | |
all_outputs = [] | |
for i, chunk in enumerate(chunks): | |
output = ner_pipeline(chunk) | |
# Adjust start and end positions for entities in chunks after the first | |
if i > 0: | |
offset = len(' '.join(chunks[:i])) + 1 | |
for entity in output: | |
entity['start'] += offset | |
entity['end'] += offset | |
all_outputs.extend(output) | |
# Combine entities | |
output_comb = entity_comb(all_outputs) | |
# Mask emails, phone numbers, and addresses | |
masked_text, additional_masks = mask_patterns(input_text) | |
# Create masked text and masking dictionary | |
masked_text = replace_words_in_text(masked_text, output_comb) | |
mask_dict = create_mask_dict(output_comb, additional_masks) | |
# Display the masked text and masking dictionary | |
st.subheader("Masked Text Preview") | |
st.text(masked_text) | |
st.subheader("Masking Dictionary") | |
st.json(mask_dict) |